MC-3000

Servomotive Corporation

MC-3000
Motion Controller

Users Manual
And

Progamming Guide

Servomotive Corporation
P.O. Box 905

Worcester, MA 01613
USA

Phone: 508-791-2221
Fax: 508-791-7893

Users Manual and Programming Guide

MC-3000

CONTENTS
Section 1 Introducing the MC-3000
1.1 MC-3000 Description
1.2 Features
1.3 Specifications
Section 2 Getting Started
2.1 Required .Hardware
2.2 Setup Procedure
2.2.1 Switch Settings
2.2.2 Jumper Settings
2.2.3 Installation
2.2.4 DAC Calibration
2.2.5 Amplifier and Motor Connection
2.2.6 Encoder Connection and Phasing
Section 3 MC-3000 Detailed Description and Operation
3.1 MC-3000 to PC/AT/XT Interface
3.2 Address Scheme
33 HCTL-1100 Operation
3.3.1 Program Counter (RO5H, RO5D)
3.3.2 Flag Register (R00OH, R0O0OD)
3.3.3 Status Register (RO7H, R07D)
3.3.4 Emergency Flags - Stop and Limit
3.3.5 Digital Filter (R22H R34D, R21H R33D, R20H R32D)
3.3.6 Sample Timer Register (ROFH R15D)

3.3.7 Operating Modes

10
11
12
16
21
21
21
23
23
23
27
28
29
31

32

User’s Manual and Programmer’s Guide

MC-3000

3.3.8 Set Up Routines
3.3.9 Control Modes
3.3.10 Commutator
Section 4 Programming the MC-3000
4.1 Introduction to Programming the MC-3000
4.2 Programming the MC-3000 with MCBasic
4.2.1 POS.CMD. Position Control
4.2.2 TRAP.CMD. Trapezoidal Control |
4.2.3 PROP.CMD. Proportional Velocity Control
42.4 INT.CMD. Integral Velocity Control

425 Commutator Example

43 Programmjng the MC-3000 from the Windows 3.1 based Motion Control

Center

33
34
40
57
57
57
69
70
71
71

72

74

44 Prdgramming the MC-3000 Using the MC-3000 “C” Language Libraries

and a User Supplied C Compiler
4.5 Summary

APPENDIX A
HCTL-1100 Data Sheet

APPENDIX B
Design of the HCTL-1100's Digital Filter
Parameters by the Combination Method

APPENDIX C
Warranty, Maintenance, and Liability

75

76

User’s Manual and Programmer’s Guide

MC-3000

Acknowledgment

Portions of this document were produced by Agilent Technologies
Inc. and are presented here to clarify and further supplement the
HCTL-1100 data sheet information. Servomotive Corporation is
grateful to Agilent Technologies for permission to include this
information. Agilent Technologies does not claim any
responsibility or liability for the information presented herein or
for the MC-3000.

Disclaimer

Servomotive believes all information in this manual to be accurate
and reliable at the time of printing. It does not however assume
responsibility for any errors or omissions in this document, and
reserves the right to make changes to this document without notice
or obligation.

Preface

This manual is intended to serve as a starting point for the MC-
3000 motion controller. It contains information on the setup,
initial operation, and detailed control capability of the MC-3000.

For those who want to check out the MC-3000 right away, we
recommend you read chapter 1, which introduces the MC-3000
control modes, followed by Chapter 2, which will help you set up
the MC-3000 and check out the controller’s functionality. Then
read Chapter 4 on programming the MC-3000 using the user-
friendly software. This will omit the details of Chapter 3 and
demonstrate the MC-3000’s functionality right away. We also
recommend that you print the source programs and documentation
files on the enclosed disk for reference while you learn to program
the MC-3000. We at Servomotive Corporation sincerely hope that
that the MC-3000 provides a useful and valuable tool in your
motion control applications, and welcome your comments and
suggestions for improvement of our products to better meet your
needs.

Users Manual and Programming Guide

MC-3000

Introducing the MC-3000

1.1 MC-3000 Description

The MC-3000 motion controller is an IBM PC/XT/AT (ISA Bus) compatible
application board designed around three of the Hewlett Packard HCTL-1100
motion controller ASICs. The MC-3000 provides three axes of closed loop
motion control. Each axis has two Position Control modes and two velocity
control modes. In addition, the MC-3000 also provides eight digital output bits
and eight digital input bits. Four of each of these are optically isolated, and the
other four of each are TTL levels. '

All that is needed for a three axis closed loop servo system is a PC/XT/AT com-
puter or compatible, an MC-3000 with optional cable and connector board,
three servo motor power amplifiers, three servo motors with incremental optical
encoder, and a motor power supply. These components, and their basic interre-
lationship is illustrated in Figure 1.

Power
ACPower——p» Supply

* DC Power (Connected to all

3 Power Ampilifiers)
Power {1
———® Amplifier |— Servo
Motor
Optical Encoder
PC/XT/AT Computer * |
MC-3000
Connector Power [
—,\—4 Board P> Amplifier |— Servo
Ribbon
Cable A otical Emcod Motor
ptical Encoder L_
' (-
Power 0
P> Amplifier |— Servo
Motor
Optical Encoder
£ T |
Figure 1 Block Diagram of the MC-3000 Motion Controller

User’s Manual and Programmer’s Guide 1

MC-3000

This section introduces the main features of the MC-3000, including control
modes and basic performance specifications provided by the MC-3000, and
summarizes the command outputs, feedback and the computer interface. A
more complete description follows in subsequent chapters.

Control Modes

The control modes provided by the MC-3000 are:

+ Proportional Velocity
+ Integral Velocity

+ Position

+ Trapezoidal Profile

These control modes will now be briefly introduced.

Proportional Velocity Control Mode. The Proportional Velocity control mode
provides velocity control using a motor command proportional to the velocity
error times a gain value K. The other servo loop compensation parameters, a
pole and zero, are not used. In this control mode the user specifies the desired
velocity in 12 bits of integer and four bits of fractional units, where the units are
quadrature counts per sample time. (Note: quadrature counts are equal to four
times the encoder wheel pulses per revolution) When the “Control Mode” bit is
set, velocity control begins and the velocity of the motor is calculated from the
difference in position. This velocity is compared to the desired velocity to find
the velocity error. The velocity error is then multiplied by the gain factor K, and
this motor command is output to the MC-3000 motion command output ports.
This velocity control method provides rudimentary velocity control with the
transient response governed only by the system dynamics. If the motor shaft is
stalled then released, the motor will return to the velocity commanded.

Integral Velocity Control Mode. The Integral Velocity control mode provides
velocity control with controlled acceleration and deceleration at a user-defined
maximum rate. This approach uses an eight-bit command velocity and a 16-bit
command acceleration. The velocity is an integer with units of quadrature
counts per sample time, and the acceleration is eight bits integer and eight bits
fractional quadrature counts per sample time squared. This control mode actu-
ally uses Position Control to achieve the Integral Velocity control. The control-
ler considers the desired velocity, actual velocity and desired acceleration, then
calculates an incremental position move to achieve the desired motion. The
compensation filter accepts this incremental position move and outputs a new
motor command. This control mode has the advantage of using the full digital
compensation filter with integral feedback, so the steady state velocity error is
zero. This is an advantage over the proportional velocity control mode. Integral
velocity control mode may be harder to stabilize however, because it uses the
pole and zero. If the motor shaft is stalled and then released, the motor output
will saturate at full motor command value until the motor position has caught up
with the correct position along the profile, at which time it will return to the pro-
grammed velocity limit.

User’s Manual and Programmer’s Guide

MC-3000

Position Control Mode. The Position control mode performs rapid point-to-
point position moves with no velocity profiling. The final desired position, or
setpoint, is an absolute 24-bit position stored into the three registers “Command
Position,” (MSB-MID-LSB). When the position control mode begins, the MC-
3000 controller compares the position setpoint with the actual motor position
and finds the position error. The controller then applies this position error to the
digital compensation filter (using the gain, pole and zero), which generates a
motion command output that is then latched into the motion command output
ports. This process is repeated every sample period. Once at the setpoint posi-
tion, the motor remains in Position Control mode holding its position. The tran-
sient response of a position control mode move is governed only by the system
dynamics, and uncontrolled transient velocity, acceleration, and position over-
shoot are typical.

Trapezoidal Profile Control Mode. The Trapezoidal Profile control mode pro-
vides point-to-point position moves while controlling the velocity and the accel-
eration. The inputs for this control mode are the final 24-bit position, the
maximum seven bit velocity, and the 12-bit integer and four bit fractional accel-
eration. The units for these inputs are the same as discussed for the previous
control modes. The controller accelerates at a constant acceleration as specified
by the acceleration command, until the maximum velocity is reached or half the
position move is completed. Then it either slews at maximum velocity until the
deceleration point, or it inmediately enters the deceleration point respectively,
and decelerates at a constant acceleration to a stop at the commanded position.
When the controller sends the last position output to the motor command output,
it enters the Position Control mode with the same command position setpoint,
and holds that position. This mode controls the transient velocity, acceleration,
and position response.

Motion Command Output Provision

The motion command outputs of the MC-3000 are connected to a compatible
power amplifier to drive the servo actuator. Possible servo actuators are DC
brush motors, DC brushless motors, stepper motors, and hydraulic or pneumatic
servo actuators. The remainder of this manual will refer to the MC-3000 as a
motor controller, or motion controller, but it is recognized that other actuators
are possible. The MC-3000 supports three types of motion command outputs,
specifically:

+ Pulse width modulation (PWM) output with TTL level Pulse and Sign sig-
nals, and = 100 count resolution (less than 8 bit)

+ Linear DAC voltage output, user adjustable anywhere up to + 10 volts
(default), with eight bit resolution

+ Commutator outputs PHA, PHB, PHC, PHD for driving DC brushless and
stepper motors using incremental optical encoder feedback only. The com--
mutator is fully programmable for two, three or four phases, and also has
programmable phase overlap and phase advance to optimize motor torque
ripple and speed characteristics. This is an advanced feature, and recom-

User’s Manual and Programmer’s Guide : 3

MC-3000

mended for sophisticated motion control designers, and special applications
only.

Motion Feedback Provision .

The only feedback required for the MC-3000 is an incremental encoder with
two or three channels (three, if the commutator is used). The MC-3000 can be
jumper selected for either differential encoder inputs (RS-422/3), or single-level
inputs for each of the three channels.

Computer Interface

The MC-3000 provides a convenient computer interface to the HCTL-1100
motion control I.C., using a synchronous I/O port register interface occupying
only five addresses of the PC's I/O port space. The base address of the MC-3000
is DIP switch selectable with address bits A3 through A8. This provides maxi-
munm flexibility and allows one PC to drive multiple MC-3000 boards.

The MC-3000 uses a high speed 32 register parallel interface which takes only
one microsecond for a write to any register, and 2.1 microseconds for a read
from any register. This is three orders of magnitude faster than most other serial
interface motor controllers, which typically use a relatively slow RS-232 serial
interface and a polled communications “mail-box” approach. The high speed
communications of the MC-3000 interface makes it appropriate for multiaxis
motion control, such as robotics, numerically controlled machines, XYZ tables,
medical positioning systems, and other factory and laboratory automation appli-
cations.

User’s Manual and Programmer’s Guide

MC-3000

1.2

Features

1.3

. Full-sized expansion card for PC/XT/AT and compatibles

Closed-loop high performance position and velocity control of DC brush,
DC brushless, and step motors

Programmable digital compensation filter, with a gain, pole and zero

Programmable sample timer allowing a loop sample time from 64 microsec-
onds to 2.048 milliseconds

Programmable position and velocity profile control with velocity and accel-
eration limits

24-bit position counter

Encoder feedback selectable for single or differential inputs

20 KHz PWM output, pulse and sign

Motor commutator for DC brushless or step motors, with programmable
phase overlap and phase advance

Eight digital output bits, 4 optically isolated and 4 TTL levels
Eight digital input bits, 4 optically isolated and 4 TTL levels

High speed interface to PC uses only five registers in PC I/O space
Register write time 1 microsecond

Register read time 2.1 microsecond

Control and Demonstration software provided in C, MCBasic, and a menu
based point and click “Motion Control Center” interface using Microsoft
Windows 3.1 with DLLs

Specifications

TABLE 1

MC-3000 General Performance Specifications

Position Range 24 bits (16,777,216 [quadrature counts])
Velocity Range 31 - 32106 [quadrature counts/sec]
Acceleration Range 2 - 2000 [quadrature counts/secz]

Loop Sample Time 64 - 2048 [microseconds]

Maximum Encoder 312.5 [kHz]

Frequency

PWM Modulation 20 kHZ

Frequency

User’s Manual and Programmer’s Guide

MC-3000

TABLE 2 MC-3000 Electrical Specifications

IPARAMETER ISYM lMlN]TYP 'MAX IUNIT lCOMMENT'

POWER SUPPLY REQUIREMENTS

MC3000
+5V Current lec 1.45 A only

MC3000
+12 V Current lec 30 mA only

MC3000
-12v Current lec 30 mA only

DAC MOTOR COMMAND OUTPUT

source Current loh 10 20 mA
sink Current lo! 5 8 mA
max Voltage (FFH) +10 |V :gjeur;table
min Voltage (00H) -10 v :Sﬁémble
COMMUTATOR OUTPUTS PHA,PHB,PHC,PHD
AND PWM OUTPUTS PULSE, SIGN
AND TTL LEVEL DIGITAL OUTPUTS
output V high Voh |24 |34 v at loh=-3mA
output V low Vol 25 4 Y atiol=12mA
output | high loh -15 mA
output | low lol 24 mA
PWM modulati
freq, modufation 20 kHz
DIGITAL OUTPUTS, OPTO-COUPLED
collector current lec 30 mA
breakdown V BVceo |30 85 v atlc=1.0mA
breakdown V BVeco |6 13 \ amti:;:?o
DIGITAL INPUTS TTL LEVEL
high input V Vih 2 v
low input V Vil +0.8 [V
high input | lih 20 |fiero
lowinput | lil -0.2 |mA
DIGITAL INPUTS OPTO-COUPLED
diode fwd | It 20 |60 [ma [2700hm
diode revV vr 3 v
diode fwd V \] 125 (150 |V at If=20 mA
ENCODER INPUTS, SINGLE-ENDED INPUT MODE
input low V vil +0.8 |V
input high V Vih 24 \%
ENCODER INPUTS, DIFFERENTIAL INPUT MODE
input cmn mode V 7 25 \"
input diff mode V 6 25 |V

6 User’s Manual and Programmer’s Guide

MC-3000

2.1

Getting Started

Required Hardware

2.2

The hardware required for a three axis servo system using the MC-3000 is listed
below:

+ PC/XT/AT computer

» MC-3000 motor controller

* 3 Motors (DC brush, DC brushless, or stepper) with two or three phase
incremental encoder

* 3 Motor amplifiers for the appropriate motor
» Power supply for the amplifiers

This chapter will discuss how to configure and connect these components into
an operational system.

Setup Procedure

2.2.1

MC-3000 Switch Settings

TABLE 3

The computer interface to the MC-3000 uses a port I/O address interface to
allow communication with the MC-3000 internal registers. The base address of
the MC-3000 must be set at a unique address to allow the computer to talk to the
MC-3000. The MC-3000 provides a six position DIP switch for selecting the
base address of the MC-3000 board. This switch is designated SW1 on the silk-
screen of the MC-3000 PCB. Associated with each switch contact of SW1 is an
address also on the silkscreen of the MC-3000 PCB. These are designated A3
through A8. Additionally A9 is internally set, and required as a part of the base
address. Each DIP switch contact in the open (or off) position adds its corre-
sponding value to the base address, in addition to the A9 value of 512 decimal.
The corresponding values for each of these switch contacts is shown in Table 3
below:

Switch Settings and Base Address Values

A8 = 28 =256
A7 =27 =128
A6 = 26 = 64
AS =25 =3

User’s Manual and Programmer’s Guide 7

MC-3000

TABLE 3 Switch Settings and Base Address Values
A4 =2 =16
A3 =28 =38
For example, if switch contact A8 is set to the open position (off position) and
the rest are closed (on position), the correct base address is 512 + 256 = 768 (or
300 Hexadecimal). This is the default base address of the MC-3000. A user-
defined base address is useful when more than one MC-3000 board is to be used
in a single PC, as with a multiaxis application. Care should be taken, however,
to ensure that each MC-3000's base address and the four addresses above each
base address (five addresses total) are not already used in the PC for any other
application board or other use.
Table 4, shown below, is an I/0 port address map which shows the nominal I/O
port address space and the associated usage as specified by IBM for a range of
computer peripherals. The MC-3000 base address must not overlap any of these
addresses that are used, or the addresses of any other peripheral boards in the
users computer system, or else an addressing conflict will exist, causing errone-
ous behavior of the MC-3000 and possibly the conflicting peripheral. Generally
the prototype card address space at 300H to 31FH (768 to 799 decimal) is an
unused space and appropriate for the address space of one or more of the MC-
3000 boards.
TABLE 4 Typical PC/XT/AT 1/O Port Address Map
HEX Range Use
200-20F Game control
210-217 Expansion unit
2F8-2FF Asynchronous communications (secondary COM2)
300-31F Prototype card
320-32F Fixed disk
378-37F Printer
380-38C SDLC communications
380-389 Binary synchronous communications (secondary)
390-393 Cluster
3A0-3A9 Binary synchronous communications primary
3B0-3BF IBM monochrome display/printer
3D0-3DF Color/graphics
3F0-3F7 Diskette
3F8-3FF Asynchronous communications (primary)
8 User’s Manual and Programmer’s Guide

MC-3000

2.2.2

MC-3000 Jumper Settings

JP1 JP2 JP3

321321321

JP1 JP2 JP3

TEOoEoe B8

321321321

AXIS 1: JP1-CHA,
JP2 - Index, JP3 - CH B

AXIS 2: JP1-CHA,
JP2 - CH B, JP3 - Index

AXIS 3: JP1-CHA,
JP2 - CH B, JP3 - Index

Figure 2

The MC-3000 has twelve jumper type shorting connectors for specifying the
boards configuration.

The jumpers JP1 - JP9 are for specifying the encoder input mode as either single
ended, or differential inputs. These jumpers are located next to the large output
connector J1.

» To select a single-ended encoder, place these jumpers in the rightmost posi-
tion, shorting Pins 1 and 2 for each jumper JPx.

¢ To select a differential encoder input, place these jumpers in the leftmost
position (factory default), shorting Pins 2 and 3 for each jumper JPx.

The jumpers JP10, JP11 and JP12 are located in the right central portion of the
PCB. These jumpers are to connect the index pulse from Axis 1, 2, and 3
respectively to the digital input bits DI7, DI6, and DIS5 respectively for use as a
fine homing reference point. If JP10, JP11, or JP12 has a jumper between Pins 1
and 2, then the index pulse for that axis is selected as input for its respective dig-
ital input bit, otherwise if the jumper is between Pins 2 and 3 then the edge con-
nector input is taken as the digital input on the appropriate pins.

The jumper locations and settings are shown in Figure 2.

Right justify jumpers, shorting pins
1 and 2 to connect the encoder
index pulse to digital inputs DI7,
DI6, DI5 for fine homing axis 1,2,3
respectively, otherwise left justify
to use connector board inputs DI7,
DI6, DI5 as uncommitted inputs

Left justify jumpers, shorting pins 2 and 3 to
select a differential input encoder

Right justify jumpers, shorting pins 1 and 2

to select a single ended TTL level input JP10_JP11 JP12

encoder 321321321
JP10,JP11,JP12

The MC-3000 Jumper Settings

User’s Manual and Programmer’s Guide 9

MC-3000

223

Installation

Installing the MC-3000 board into the PC is the same as any other application
board, except for the routing of the cables. A brief installation procedure fol-
lows for those not familiar with the procedure.

Installation Instructions

1.
2.

Set the power switch on the PC/XT/AT (and any attached peripherals) to off.

Unplug the PC/XT/AT power cord from the wall outlet and remove the plugs from
the back of the PC system unit.

Position the PC/XT/AT to allow access to the rear, and using the screw driver,
remove the cover mounting screws, and set them aside in a safe place.

Carefully remove the PC/XT/AT 's cover, being careful not to snag any ribbon
cables or other loose items with the case screw flanges, and remove the cover.

Inside the PC/XT/AT there will be a number of edge connector slots for application
boards. The MC-3000 can be installed in any unused slot on the PC/XT/AT, how-
ever it is best to position it such that there is one or more empty card slots toward the
component side of the board. This eases the routing of the cables. Remove the screw
that holds the expansion slot cover bracket in place. Save the screw.

Install the MC-3000 board in the expansion slot by aligning the MC-3000 card edge
in the edge connector, and pressing it firmly into the expansion slot.

Align the slot in the MC-3000 retaining bracket with the hole in the rear plate of the
system unit, and install the fastening screw.

If the optional MC-3000 cable and connector board were purchased, find the 40 con-
ductor ribbon cable, and note which side of the cable has a red stripe on it. The red
stripe notes the pin one position of the cable. Orient the cable so that the pin one side
of the cable with the red stripe is up, and the cable routes away from the back of the
PC/XT/AT, then insert the cable into the MC-3000 card edge slot at the back of the
PC/ZT/AT. If necessary, use the other end of the cable to get the orientation right.
Next, mate the 40 pin header connector on the ribbon cable with the 40 pin dual row
header connector designated J2 on the MC-3000 board. Be very careful to align the
cable properly to avoid misaligning the connector and header. Double check that the
cable is not misaligned. (It may be necessary to remove other cards in the PC/XT/
AT to provide enough room to do this operation reliably)

Next, find the 60 conductor ribbon cable, and note which side of the cable has a red
stripe on it. The red stripe notes the pin one position of the cable. Orient the cable so
that the pin one side of the cable with the red stripe is down, and the cable routes
away from the back of the PC/XT/AT, then insert the cable into the MC-3000 card
edge slot at the back of the PC/ZT/AT and over the 40 conductor cable. If necessary,
use the other end of the cable to get the orientation right. Also it may be necessary to
flex the 60 conductor cable carefully as it clears the 40 conductor cable. Next, mate
the 60 pin header connector on the ribbon cable with the 60 pin dual row header con-

nector designated J1 on the far end of the MC-3000 board. Be very careful to align

the cable properly to avoid misaligning the connector and header. Double check that
the cable is not misaligned. (It may be necessary to remove other cards in the PC/
XT/AT to provide enough room to do this operation reliably)

10. If any other card were removed from the PC/XT/AT, replace them now.
11. Replace and refasten the cover.

Note: If this is the initial installation, and a special amplifier (other than = 10 volt

10

User’s Manual and Programmer’s Guide

MC-3000

224

input for a analog command type) is being used, it may be necessary to do a motor
command DAC calibration or encoder checkout using the test points, in which case
keep the cover off and see Section 2.2.4 for instructions. If a conventional motor
amplifier is used, with a + 10 volt input range, then no adjustment is necessary.

12. Re-cable the PC/XT/AT.

13. If the MC-3000CB and MC-3000 CA connector board and cable were purchased,
they should be connected to the MC-3000CB connector board now, carefully align-

ing the red striped end of the cables to the pin 1 designation on the connector board.
Double check that the cables are centered on the dual row header connectors.

DAC Calibration

The DAC (Digital to Analog Converter) output has separate Gain and Offset
potentiometers to allow the DAC voltage range to be adjusted anywhere within
+10 volts to -10 volts. This allows the MC-3000 to accommodate a number of
different types of amplifiers using analog input, such as those requiring + 10
volts, 0 to 10 volts, + 5 volts, or other desired ranges. The calibration procedure
for setting the DAC output voltage dynamic range is as follows.

Tools Required:

* Voltmeter
+ Small flat bladed screwdriver, or potentiometer adjustment tool.

1. Attach voltmeter between the DAC testpoint and the GND testpoint along the top
side of the MC-3000 board. (Testpoint 30=DACI1, Testpoint 29=DAC2, Testpoint
28=DAC3)

2. Insert the MC-3000 programs disk into the computer and run the program
CALDAC.EXE by typing:

CALDAC [ENTER]

The program prompts you to enter the MC-3000's base address. The default address
is 768. Set the base address to 768 to calibrate the first axis, to 769 to calibrate the
second axis, and to 770 to calibrate the third axis.

3. The program displays “DAC Voltage Minimum.” This is equxvalent to entermg 00D
in ROBH=RO08D. Now adjust the “OFFSET” pot along the top of the MC-3000 board
until the voltmeter shows the desired minimum voltage (factory set at -10 volts)
which should correspond to full negative command.

4. Press any key to continue. The program displays “DAC Voltage Maximum.” This is
equivalent to entering 255D in RO8H=R08D. Now adjust the “GAIN” pot along the
top of the MC- 3000 board until the voltmeter shows the desired maximum voltage
(factory set at +10 volts) which should correspond to full maximum command.

5. Press any key to continue. The program displays “DAC Voltage Middle.” This is
equivalent to entering 127D in RO8H=R08D. Now adjust the “GAIN” pot along the
top of the MC- 3000 board until the voltmeter shows the desired middle voltage
(factory set at 0 volts) which should correspond to zero motor command.

6. Now verify the desired DAC output voltage dynamic range by pressing any key to
repeat Steps 3, 4 and 5 and making any necessary adjustments.

User’s Manual and Programmer’s Guide 11

MC-3000

225

Amplifier and Motor Connection

The details of the amplifier and motor connection to the MC-3000 depends on
the type of amplifier and motor used. This section will introduce a typical con-
nection between the MC-3000 and two typical servo power amplifiers and
motors, although the specific servo power amplifiers you are using should be
checked carefully for their specific connection requirements to verify compati-
bility.

The most common type of amplifier used for servo motor control is an analog
input (x 10 volt) type, with a Pulse Width Modulated (PWM) power stage. This
type of amplifier is often called a “PWM?” amplifier, although it uses an analog
input. This may lead to confusion for inexperienced users, but from the MC-
3000 controller interface viewpoint, this is an analog input amplifier. Another
less common type of commercially available amplifier is a PWM input ampli-
fier, where the amplifier power stage is directly controlled by the motion con-
troller with a PULSE and SIGN input, where the PULSE input uses PWM.
Before connecting the MC-3000, verify which type of amplifier is to be used,
and then proceed.

Analog Input Amplifier Interface

An analog input amplifier, typically with + 10 volt input range, will require con-
necting the MC-3000 DAC voltage output and a common ground to the ampli-
fier for the amplifier command signal. A diagram of this configuration is shown
in Figure 3. Additionally it may be desirable to connect one of the digital outputs
from the MC-3000 to the servo power amplifier as an enable input, although
this is generally not necessary. Figure 3 also illustrates some general tips on
good design practices for connecting the amplifier, motor, encoder, etc.

PWM Input Amplifier Interface

A PWM input amplifier will require connecting the PULSE and SIGN and a
common ground from the MC-3000 to the amplifier. The MC-3000 outputs,
PULSE and SIGN, are driven by TTL buffered drivers (74LS244), and have
drive capacities as shown in the electrical specifications. The PULSE is the
command magnitude, with = 100 count resolution and 20 kHz modulation fre-
quency. The SIGN is the direction control signal, that is a TTL logic low level
(0) for reverse direction, and TTL logic high (1) for the positive direction. A
block diagram of this configuration is shown in Figure 4.

User’s Manual and Programmer’s Guide

MC-3000

(sisseyo) aseod Jojow pue

pub dwe o} pajoauuod punosb pjaiys
Yum ‘papjalys aq pinoys speaj J0jo\ (€
" 1ayjaboy

pajsim} aq pjnoys speaj Jamod 10Jo (2

eyl
-wis si uoisinoid Bunim 10jow ssajysniq
0a Inq ‘umoys s} Jojow ysniq Oa v (1

apow dooj Juanind pue ‘suoijedydde yipimpueq
MO) 10} }53q S} apow abejo "apow dooj Juannd
10 apow abejjoA Jayye 10} Jos aq ued dwy (g

‘suofjeoljdde yipimpueq ybiy 104 Jsaq s|

139} ¢ uey)

196U0] $3]qed J9POIUD JOj PIPUBWIWO
-031 SE 'UMOYS JapodUa jenualayiq (z -JOAO UB JO XIJjNS XSIJSE U. YiIm pajeu

sajqed (100} 0} <) Buoy

104 pasinbai ajqed 1apodua papiaiys (1

(yuauno

anjebau xew sjenbas s)joA Q|- ‘Juaund aaisod
Xew s[enba JjoA 0} +) ule9 je|d, 10} dwy 198 (1

:S3JON Jalji|dwyy

:S8jON 19podu3

= VHD '9'3) Walennba are yica i

-Bisap ale s|ans) (papianul) any} aaebau
Ylim s)ndino pieoq 10}03uuod ayy (1

:S9JON pJeog 10}03uL0D

:SaJON Jojo

A

A\

puo

X3ANI

Japooug

gHO

[EjuBWIBIOY|

VHO

puo

V

NG+

-

puo

\oFSac_ UO)MS SWoH
abeyjoA induj g 1emod ybiH ol SA
+¥Z 18A0 Si 321n0s HQ Jamod > H
ybiy ay) y1 pasnbai aq Aew =
Joyoeded sossaiddns abins y
m_mwaﬂ U9
g N
Jojop
v +N
P9 pug jeubis
>+ W mo puo 10 jnduj - joy
0_o win MO0 ndu| + joy

(fuea few Ayuejod annebausanisod)
Jayldwy Jamod ayy 0} Ajoaaqg
108uUu0) AjjesidA] sayoIMs jwi

wyoy |

bIqeD PapIoIYS

cla

NG+

— puo
| ova

Jayidwy Jamod oasas jnduj Bojeuy

(+xXATANI) XAANI

(~gHO) gHD

(+VHO) YHD

000€-ON
0} 3|qeD
uoqary

pieog 10j08uuo)d 000€-ON

asiou jeubis yndu 18} 0} siayljdwe awos y)m Aiessadau aq Aew
puo) pue Dy usamjaq Jo}ioeded oly)IjouowWw PeIejoIdiW |] |lews v

ing the MC-3000 to an Analog Input Servo Power Amplifier (One of

Three Axis Shown for Clarity)

Connect

Figure 3

13

User’s Manual and Programmer’s Guide

MC-3000

(sisseyd) ased Jojow

pue pub dwe 0} pajauuod
punoib pjaiys yum ‘papjeiys
3q pinoys spesj J0jo (2

‘suoneoldde yipm

-pueq ybiy 104 }saq st apow dooj
juaund pue ‘suonesydde yypim
-pueq Moj 10} }saq S| apow abejjon
‘apow dooj juaind 10 apow abe
-}JOA J3Y}19 10§ Jas aq ued dwyy (zZ

199} ¢ uey) Jobuoj ssjqed
19POOUD 10§ POPUBLULLIODD) SB
‘umoys 1apodua jenuasapia (2

. S3|qeo
(100j 0} <) Buoj 04 pasinbai

(WHO

= VHO '©'3) 'Wajeanba ase yjog "ieq
-J9A0 UB 1O XIJJNS %S1IS)SE UB Y)im pajeu
-Bisap aie sjans| (papaaul) ans} aajebau

yum s)ndino pieoq 10j0auuod ayj (|}

'SSJON pieog 40}0auuo)

19yjab0} pajsim aq
pinoys speaj jamod 10101 (| Juies jejd, 105 dwiy 1og (1 3192 1opooud papialys (1
:S3JON J8pooug
:S9JON J0J0N :SAJON Jaydwyy R pU -
A [/ (XAANI) XAANI
X3ANI
(xgHO) gHD
gHO
Japooug
[EjuBWaU| (+VHO) YHO
VHO
puo
v VA
_.lo puo
=" Induj yoyms awoH aa
abejjon induj 9Qg 1amod ybiH A wyox |
Jayydwe woiy Akeme NG+
P2 19A0 S| 3dInos HQq Jamod >
ybuy ayy yt pasnbas oaq few =
Joyoeded Jossaiddns abins y
m_mmyﬁ puS
9 N
v +N
P|qed papiaiys
Pu9 puo |eubis PUO
b WMo ubig/uonoanq NOIS
°_o wi MODapnyubepy/asing 3s7Nd

(Mea few Ayuejod annebausanisod)
Jayiidwy Jamod ay) o} Apoalig
J8uuo) AjjeaidA) ssyoyums pwi

Jayidwy Jamod onag nduj WAG

pieog J0joauuod 000€-ON

Connecting the MC-3000 to a PWM Input Servo Power Ampilifier (One of

Three Axis Shown for Clarity)

000€-OWN
0} 8|qed
uoqqrd

Figure 4

User’s Manual and Programmer’s Guide

14

MC-3000

MC-3000 Connector Pin-Out and Testpoint Signal Names

The signals from the MC-3000 can be obtained from the connector board, as
illustrated in the preceding Figures, or directly from the J1 and J2 connectors,
designated on the MC-3000. Table 5, below, shows the MC-3000 connector pin
out assignments. Table 6 shows the MC-3000 Testpoint signal names and their

MC-3000 J1 and J2 Connector Pin Out

TABLE 5.
J1-1 INDEX3 J121 INDEG J141 INDEXY J21 o J221 DO«
Ji2 CHB3 J1-2 CHE2 Ji42 THAT J2-2 N.C. Je22 o
Ji-3 CHA3 Ji-23 sTOP2 J143 INDEX1 J2-3 Dio J2-23 D6
Ji4 STOP3 Ji-24 INDEX2 J144 TABT J2-4 ».) J224 Die
J1-5 DAC3 J1-25 UMIT2 J145 CHB1 J2-s b2 J2:25 DIS
J1-6 INDEXS J1-26 CHB2 J146 STOP1 J26 N.C. J2-26 Di
317 UMIT3 J127 . DAC2 J1-47 CHA1 J2-7 N.C. J227 Do
Ji-8 CHRE3 Ji-28 CHA2 J148 UMITH J2-8 N.C. J22s D3
J1-9 PHA3 Ji-29 +5 Ji-49 PROF1 J2-9 27e) J2-29 D2
Ji-10 THA3 J1-30 +5 J1-50 DAC1 J2:10 DO3 J2:30 NC.
J1-11 PHC3 J1-:31 PHD2 J1-51 PULSE1 J2-11 DO2 J2:31 GND
Ji-12 PHD3 Ji-32 PHA2 J1-52 INT1 J2-12 DO2 J2:32 GND
J1113 SIGN3 Ji-33 PHB2 Ji-53 JTOPT J2-13 DOo J2-33 GND
J1-14 PHB3 Ji1-34 PHC2 Ji-sa O J2-14 DOO J2-3¢ GND
J1-1s JTOP3 J1-3s OMIT2 Ji-55 PHAY J2-15 DO J2-35 +5
Ji-16 UMIT3 J1-36 SIGN2 Ji-56 PHD1 J2-ie DO1 J2-36 +5
J1-17 INMT3 J1-37 PULSE2 J1-57 PHC1 J2-17 NC. J2-37 +5
J1-18 PULSE3 Ji-as8 3T0P2 Ji-58 PHB1 J2-18 DO7 J2-38 +5
J1-19 THAZ J1-39 PROF2 J1-59 GND J2-19 DOS J2-39 NC
J1-20 PROF3 J140 INMT2 J160 SIGN1 J2.20 DOSs J240 NG
TABLE 6. MC-3000 Testpoint Signal Names
TP1 PHC3 TP10 PHD2 TP19 CHA3 TP28 DAC3
TP2 PHD3 TP11 PHB2 TP20 CHA2 TP29 DAC2
TP3 PHA3 TP12 SIGN1 TP21 CHAT1 TP30 DAC1
TP4 PHBS3 , TP13 PHA1 TP22 CHBH1
TP5 SIGN3 TP14 PULSE1 TP23 CHB2
TP6 PULSE3 TP15 PHD1 TP24 CHB3
TP7 SIGN2 TP16 PHC1 TP25 INDEX1
TP8 PULSE2 TP17 PHC2 TP26 INDEX2
TP9 PHA2 TP18 PHB1 TP27 INDEX3

respective testpoint numbers. The testpoints are located along the top of the
MC-3000 PCB.

User’s Manual and Programmer’s Guide

15

MC-3000

2.2.6

Encoder Connection and Phasing

The MC-3000 requires incremental encoder feedback to derive the actual posi-
tion and velocity of the servo actuator (motor). Various types of encoders are
possible, but some are better than others depending on your application. The
main distinctions are that the encoder must be an incremental encoder, and not
an absolute encoder. The MC-3000 can also accommodate single ended, TTL
level output encoders, or differential line driver type output encoders. The sin-
gle ended TTL level encoders are acceptable if short encoder cables are used,
typically less than 3 feet. An encoder with a differential lie driver should be
used if longer encoder cables are required. Also the MC-3000 can accept
encoder signals for two (A,B) or three (A, B, Index) channel incremental
encoder inputs. Two is sufficient for normal operation, while three are required
if the commutation option is to be used, or if the fine home option is used,
allowing the motor to initialize it’s initial position with both a limit switch input
and an index pulse occurrence. The encoder connections. Proper jumpering of
JP1 through JP9 is required as discussed in section 2.2.2 to define the encoder
input type as either single ended TTL levels or differential line driver type. Also
proper shielding of the encoder cable is recommended, especially for long
encoder cable installations, and Figure 3 and Figure 4 illustrate good practice
for encoder cable shielding.

The preferred way to connect the incremental encoder to the MC-3000 connec-
tor board, is to use the MC-3000CB connector board terminal blocks. The ter-
minal block connection approach was illustrated in Figure 3 and Figure 4. If a
single ended TTL level encoder is used, the complimentary inputs CHA, CHB,
and INDEX are not simply not connected.

The encoder set up also requires proper loop polarity phasing. This means that if
the MC-3000 gives a positive motor command output, the amplifier drives the
motor in the positive direction, and the decoded position counts up, also in the
positive direction. If this loop has a polarity reversal, a positive motor command
causes the position counter to measure a decreasing position, and the motor con-
trol loop runs out of control. This can be fixed either by:

+ Reversing the feedback path polarity by reversing the encoder phase, i.e.
swap encoder phases CHA and CHB, or

+ Reversing the open loop polarity,i.e. reversing the motor lead polarity (on a
DC motor).

Generally the easiest way to correct the closed loop polarity reversal is simply
to swap CHA and CHB encoder inputs (swap both CHA and CHA with CHB
and CHB if a differential encoder is used).

To verify if the encoder phase is correct, power up the motor amplifier, and run
the program “phschk.exe.” This program:

« checks the decoded actual motor position
+ outputs a positive motor command to the motor

16

User’s Manual and Programmer’s Guide

MC-3000

2.2.7

+ checks to see the decoded position is increasing
+ Prints a message indicating if the loop polarity is proper, or reversed

This requires that the motor and amplifier are hooked up and power is applied.

MC-3000 Digital /O Connection

The MC-3000 provides eight digital output bits and eight digital input bits.
These are very useful in servo systems design for limit switch detection, home
sensor detection, or actuating some other device.

An example of one optically coupled digital output bits are shown in Figure 5.

+5 V ISO Typical (30 V Max)

l
MCT-6 or ILD-2 270 OHM, 0.25W
MC-3000 Opto Coupler g™ | 30 ma Max
B S =— ISOLATED OUTPUT O
f\ DOO
+ 1SO GND

Figure 5

----------------------- NOTE: Digital output DOO only shown for

TR

clarity, but DO1, DO2, and DO3 similar

Optically Coupled Digital Output Connections

These digital 1/0 can be connected to the MC-3000 connector directly as illus-
trated, or via the connector board terminals with the same names. The TTL level
digital output bits are shown in Figure 6. The optically coupled digital input bits
are shown in Figure 7, and the TTL level digital input bits are shown in Figure
8. The special function HCTL-1100 inputs STOP and LIMIT are shown in Fig-
ure 9. The electrical specifications for these digital I/Os were given in Table 2.

User’s Manual and Programmer’s Guide 17

MC-3000

MC-3000 74L8374 —
P DO4 TTL LEVEL DO4

TS eevsasons Vil gemeestensy

i--"" 270 Ohms

GROUND

+5V

NOTE: Digital output DO4 only shown for
clarity, but DO5, DO6, and DO7 similar

—

NOTE: 270 OHM RESISTORS ARE IN SERIES WITH 74LS374
BUFFER DRIVER OUTPUTS FOR TTL OUTPUTS ON THE MC-3000 PCB.

Figure 6 TTL Level Digital Output Connections

Limit Switch
ISOLATED INPUT (5V Typ, 17V Max) ~
- * +5 SO
20 ma typ, 60 ma max
ISOLATED GND — GNDISO
~
N

ONE POSSIBLE CONFIGURATION
MCT-6 or ILD-2 FOR LIMIT SWITCH DETECTION

Opto coupler

NOTE: Digital input DIO only shown for clar-
ity, but DI1, DI2, and DI3 similar

—
—

I

Figure 7 Optically Coupled Digital Input Connections

18 User’s Manual and Programmer’s Guide

MC-3000

MC-3000 74LS244 |
A__yD4 TTL LEVEL DI4

{270 Ohms

GROUND

+5V

NOTE: 270 OHM RESISTORS ARE IN SERIES WITH 74L5244
BUFFER DRIVER INPUTS FOR TTL INPUTS ON THE MC-3000 PCB.

NOTE: Digital input DI4 only shown for clar-
ity, but DI5, DI6, and DI7 similar

Figure 8 TTL level Digital Input Connections
| 270 Oh S1oP
MC-3000 ms ST .

.................... STOP! e +51SO

................ AT —
——STOP GND ISO

LIMIT
270 Ohms
- LIMIT] Ls2~” +51SO

% — TN GND ISO

Opto coupler

+5V

Figure 9 Stop and Limit Optically Coupled Digital Input Connections

User’s Manual and Programmer’s Guide

MC-3000

20

User’s Manual and Programmer’s Guide

MC-3000

3.1

MC-3000
Detailed Description and Operation

This section will discuss the detailed operation of the MC-3000, including a
detailed description of the HCTL-1100 operation. An alternative reference for
understanding the HCTL-1100 operation is included in Appendix A for the
interested reader. A complete understanding of the details provided in this chap-
ter is not required for most users, and Chapters 1 and Chapter 4 should be suffi-
cient to allow proper operation of the system. However, for custom software
developers, OEM:s, or other interested users this chapter will provide a complete
understanding of the MC-3000 operation and capabilities.

MC-3000 to PC/XT/AT Interface

3.2

The MC-3000 uses a high speed Programmable Array Logic (PAL) based inter-
face to the PC/XT/AT to provide several desirable features, including: a register
write time one microsecond, a register read time of 2.1 microseconds, compact
decoding occupying only three addresses in PC/XT/AT normal I/O port address
space, and a user-selectable base address to allow numerous MC-3000 boards to
be used in a single PC/XT/AT. The MC-3000 internal register reads use wait
state generation on the PC/XT/AT I/O bus (2.1 microseconds total) to provide
the necessary interface timing for the HCTL-1100. This interface has been
designed for operation on all PC/XT/AT and compatible machines.

Address Scheme

The MC-3000 uses three addresses in the PC/XT/AT I/O port address space,
with one byte port I/O. The address map is shown in Table 7, as follows:

TABLE 7 /O Port Addresses
Base address HCTL-1100 #1 Enable
Base address + 1 HCTL-1100 #2 Enable
Base address + 2 HCTL-1100 #3 Enable
Base address + 3 Digital Output Register
Base address + 4 Digital Input Register

The MC-3000 uses a novel technique to allow the HCTL-1100's 64 register
space to be accessed via a single base address. The technique used is called high

User’s Manual and Programmer’s Guide 21

MC-3000

memory addressing, and is based on the fact that the PC was designed to use
only address lines A0 through A9 for I/O port addressing. This means that A10
through A15 are not used for decoding, although they are electrically present
and available. The MC-3000's high memory addressing technique requires that
the MC-3000's base address be asserted to provide an enable for access (read or
write) to the HCTL-1100. It also requires that A10 through A 15 be driven with
the address of the specific register in the HCTL-1100 to be accessed, with A10
having the value of A0 (0), etc. up to A15 with value A5 (32). This approach is
shown graphically in Figure 10.

ADDRESJ HCTL
ADDRESS A10-A15 DATA 1100 DAC &
—MULTI- | ADO-AD7 ENCI/O
R-
DATA D0-D7 PLEX > <—p NTER -
BUFFER CONN
MUX SEL ' >
ADD A0
DDRESS HCTL DIGITAL
DECODE| ENABLE] BUFFER
ADDRESS At DOEN -
DI ENABLE ¢!
DIGITAL
INTER- > INPUT
FACE BUFFER
DELAY LINE LOGIC
PALS —> g
, fEQUAL SwWi1
— | A2
ADDRESS A2 - A9 S
COMPARE —
— | A9

Figure 10

Block Diagram of the MC-3000 Interface

This approach can be understood by noting A10 has a value of 1024, so the reg-
ister number N in the HCTL-1100 can be accessed at address (base address) +
N*1024. For example if the base address is 768 decimal, and Register 9 of the
HCTL-1100 is to be written to, then a write to I/O port address 768 + 9*(1024) =
9984 would be the correct address. A read of this register can be accomplished
similarly by an I/O port read at address 9984. This approach has the advantage
of allowing any HCTL-1100 register to be read or written to with a single read
or write instruction, and doesn't require any special software driver program.

22

User’s Manual and Programmer’s Guide

MC-3000

33

Also it condenses the HCTL-1100's 64 registers into just one of the PC/XT/AT's
normal 1/O port address space registers. To talk to the first axis, use 768 as the
base address (or what ever you set it to), and to talk to the second axis use 769
as the base address, an similarly for the third axis use 770 as the base address.
The remainder of this chapter will detail the operation of a single HCTL-1100,
each of which functions identically on the MC-3000.

HCTL-1100 Operation

331

The HCTL-1100 operation is controlled by a bank of 64 eight-bit registers, 32 of
which are user-accessible. These registers provide parallel access to the com-
mand and configuration registers necessary to operate the controller chip. The
register number is also the address within the HCTL-1100, and can be accessed
from the PC/XT/AT in a manner described in Section 3.2. The 32 user accessi-
ble addresses are shown in Figure 11. A functional block diagram which shows
the role of the user accessible registers is shown in Figure 12.

The other 32 registers not detailed in Figure 11 and Figure 12 are used internally
to the HCTL-1100 only, and should not be accessed by the user. The registers
provided for configuring the controller are detailed further in the following sec-
tion.

Program Counter (R0SH, R0OSD)

TABLE 8

The program counter initiates the preprogrammed functions of the controller. It
is a write only register. It is used along with the Flags register to select the con-
troller’s present control mode. Table 8 defines the commands for the Program
Counter register, with the numeric command to send to ROSH, and command
description:

Program Counter Commands

3.3.2

00H Software reset
01H Initialization/idle mode
02H Align mode

03H Enter control mode (flags FO, F3, F5 select control
mode)

The program counter commands are shown in a flow chart summary in Figure
13. It is very important that the flow chart illustrated be used to change modes to
assure proper operation of the MC-3000.

Flag Register (R00H, R00D)

The flag register contains flags FO through F5. It is a write only register. Each
flag can be set or cleared by a write to the flag register. The value written to the
register uses the bottom three bits to determine the address of the flag, the fourth

User’s Manual and Programmer’s Guide 23

MC-3000

Register User
Hex Deec. Function Mode Used Data Type Access
ROOH ROOD Flag Register All - riv
ROSH ROSD Program Counter All scalar w "
RO7TH RO7D Status Register All = v
ROSH R0O8D 8 bit Motor Command Port All 2's cg:)n};{)lement -

+ b
09D PWM Motor Command Port All 2's complement r/w
gg%II:II II§12D Command Position (MSB) A]%Ie;ccept Proportional 2's complement /w3
clocity
RODH | R13D Command Position Al%lealccept Proportional 2's complement /Wi
clocity
ROEH R14D Command Position (LSB) A]'lve;:cept Proportional 2's complement AR
clocity
ROFH R15D Sample Timer All s?alar r/w
R12H R18D Read Actual Position (MSB) All 2's complement 4 s
R13H R19D Read Actual Position - All 2's complement s
R14H R20D Read Actual Position (LSB) All 2's complement 4
" R15H R21D Preset Actual Position (MSB) | INIT/IDLE 2's complement wil
R16H R22D Preset Actual Position INIT/IDLE 2's complement wiel
R17H | R23D | Preset Actual Position (LSB) INIT/IDLE 2's complement witl
R18H R24D Commutator Ring All scalari6.? r/wv
R19H R25D Commutator Velocity Timer All sealar w
RI1AH | R26D All sealar'® r/w
R1BH | R27D Y Phase Overlap All sealar(® riw
RI1CH | R28D Offset All 2's complement!” | rv/v
RIFH | R31D Maximum Phase Advance All scalare? r/w
R20H | R32D Filter Zero, A All except Proportional scalar r/w
Velocity
R21H R33D Filter Pole, B All except Proportional scalar r/w
Velocity
R22H R34D Gain, K All sealar riw
R23H R35D Command Velocity (LSB) Proportional Velocity 2's complement riw
R24H R36D Command Velocity (MSB) Proportional Velocity 2's complement r/wv
R26H R38D Acceleration (LSB) Integral Velocity and scalar r/w
Trapezoidal Profile
R27H R39D Acceleration (MSB) Integral Velocity and sealar{® r/w
Trapezoidal Profile
R28H R40D Maximum Velocity Trapezoidal Profile scalarl® riw
R29H R41D Final Position (LSB) Trapezoidal Profile 2's complement riwv
R2AH R42D Final Position Trapezoidal Profile 2's complement r/w
R2BH R43D Final Position (MSB) Trapezoidal Profile 2's complement r/w
R34H R52D Actual Velocity (LSB) Proportional Velocity 2's complement r
R35H R53D Actual Velocity (MSB) Proportional Velocity 2's complement r
R3CH | R6OD Command Velocity Integral Velocity 2's complement r/w
Notes:

1. Consult appropriate scction for data format and use.

2. Upper 4 bits are read only.

3. Writing to ROEH (LSB) latches all 24 bits.

4. Reading R14H (LSB) latches data in R12H and R13H.
5. Writing to R13H clears Actual Position Counter to zero.

6. The scalar data is limited Lo positive numbers (00H to 7FII).

7. The commutator registers (R18H, R1CH, R1FH) have further limits which are discussed in the Commutator section of this

data sheet.

8. Writing to R17H (R23D) latches all 24 bits (only in INTT/ADLE mode).

Figure 11

HCTL-1100 Registers and Associated Function

24

User’s Manual and Programmer’s Guide

MC-3000

POSITION PROFILE GENERATION
INTEGRAL TRAPEZOIDAL
VELOCITY PROFILE

R27H ACCEL MSD | R27H ACCEL MSB o e o o

R2GH ACCEL LSB | R2GH ACUEL LSB .

R3ICH COMMAND | R28H MAXIMUM VELOCITY .
VELOCITY | R20H FINAL POS MSB

R2AH FINAL POS *

R29H FINAL POS LSB .

L]

Y

COMMAND VELOCITY COMMAND POSITION
R24H MSD ROCH MSU
R23M LSO ROOH
ROEH LSO
| AV S J
—0\ O—
r‘ 8-BIT PARALLEL
J DIGITAL FILTER MOTOR COMMAND
CONFIGURATION . - PORT
REGISTERS - Dlz) = KlZ=AI256) _/r noen MCoMC
— 7

ROOH FLAG REGISTER Alz +07250)] o -

RO5H PROGRAM COUNTER | ~_ - H20M A]

RO7H STATUS REGISTER) R2IH B T moTon 1 ruLst
| A22H K | COMMAND PORT |———— SIGN
|] ROIH
L SAMPLE TIMER

2 ROFM
o/ © '
[| COMMUTATOR PORT
ACTUAL VELOCITY ACTUAL POSITION SYNC Wi AING
R1AH X
R35H MSB R12H MSB RISH RIDH Y PHA.PHD
R34H LSB R13H R16H
R14H LSB RI7H R1CH OFFSET
R1FH MAX ADVANCE
A = ¢ PROPORTIONAL VELOCITY ' RISH VELOCITY TIMER
CONTROL MODE
8 = ® POSITION CONTROL MODE F:unomwns DECODER I
o INTEGRAL VELOCITY CONTROL MODE INDEX
o TRAPEZOIDAL PROFILE MODE t t
CHA CHB
Figure 12 HCTL-1100 Functional Block Diagram

bit to specify whether to set (1) or clear (0) the flag, and ignores the upper four
bits. This technique is summarized in Table 9.

User’s Manual and Programmer’s Guide 25

MC-3000

WRITE 02H

T0 M
il vy

RESET PIN
ww

RESET =i

WRITE 00M =

INITIALIZATION
IDLE

TO ROSH

Figure 13

I t TO ROSH

WRITE 01H LMIT
TO ROSH PIN

F.7.Fs

POSITION
CONTROL

Low

OF THE MOVE.

INTEGRAL
VELOCITY
CONTROL CONTROL

|

Program Counter Flowchart

TABLE 9

Flag Register Programming

Bit Number 74 3 2 1
Function N/A set/clear AD2 ADI1

Flag Numbers

The flag numbers and their function are detailed in Table 10 as follows.

26

User’s Manual and Programmer’s Guide

MC-3000

TABLE 10

Flag Numbers and Functions

333

FO

F1

F2

F3

F4

F5

Trapezoidal Profile flag. Set by the user to select Trapezoidal Profile
control mode. The flag is reset by the controller when the move is com-
pleted. The status of FO can be monitored at the LED on the top of the
MC-3000 PCB iabeled P1, P2 or P3 for each respective axis, and on
the appropriate connector board terminal, and in the status register
RO7, bit 4.

Initialization/Idle flag. Set/cleared by the HCTL-1100 to indicate execu-
tion of the initialization/idle mode. The status of F1 can be monitored at
the LED on the top of the MC-3000 PCB labeled 11, 12, and I3 for each
respective axis and on the appropriate connector board terminal, and
in the status register R0O7 Bit 5. The user should not attempt to set or
clear F1.

Unipolar flag. Set/Cleared by the user to specify Unipolar (set) or bipo-
lar (clear) mode for the DAC motor command port.

Proportional velocity control. Set by the user to select Proportional
Velocity control.

Hold commutator flag. Set/Cleared by the user or automatically by the
align mode. When set, this flag inhibits the internal commutator
counters to allow open loop stepping of a motor by using the commuta-
tor. (See Offset Register description in the Commutator section.)

Integral Velocity Control. Set by the user to select Integral Velocity con-
trol mode. Also set and cleared by the HCTL-1100 during execution of
the Trapezoidal Profile mode. This is transparent to the user except
when the limit flag is set (see “Emergency Flags” below).

Status Register (R07H, R07D)

The status register indicates the status of the HCTL-1100. It is a read/write reg-
ister, although only the lower four bits can be written to. Each bit of the Status
register decodes into one signal. The bits and associated signals are shown in
Figure 14.

To set or clear any of the lower four bits, write an eight-bit word to the Status
register. The upper four bits are ignored, and each of the lower four bits directly
sets or clears the corresponding bit of the status register.

User’s Manual and Programmer’s Guide

27

MC-3000

Figure 14

Status Bit { Function

0 PWM Sign Reversal Inhibit
0=off
l=on

1 Commutator Phase Configuration
0 = 3 phase
1 = 4 phase

2 Commutator Count Configuration
0 = quadrature
1 = full

Should always be sct to 0

4 Trapezoidal Profile Flag F0O

1 = in Profile Control
Initialization/Idle Flag F1

1 = in Initialization/Idle Mode
6 Stop Flag
0 = set (Stop triggered)
1 = cleared (no Stop)

7 Limit Flag
0 = set (Limit triggered)
1 = cleared (no Limit)

(3]

Status Register and Associated Function

334

Status Bit 0 is the PWM Sign Reversal Inhibit, which if = 0 is off, and if =1 is
on. This sign reversal inhibit provides a deadtime when the PWM command
crosses over from one polarity to the other, by omitting the Pulse output on the
PWM precisely when the direction changes polarity. This can be useful in
avoiding cross conduction in the power amplifier, which can be inefficient or
destructive to the power amplifier.

Status Bit 1 is the commutator phase configuration flag, which is =0 for three
phase, and =1 for four phase. This is discussed further in the commutator sec-
tion.

Status Bit 2 is the commutator count configuration flag, which is =0 for quadra-
ture, and =1 for full counts. This bit is used only if the commutator is used, and
is discussed further in the commutator section.

Status Bit 3 should always be set to 0.

Emergency Flags - Stop and Limit

The status register contains two flags that have a special function for the HCTL-
1100. These are the “STOP” and “LIMIT” flags. These flags are set by hardware
via the appropriate pins on the J1 connector, and cause the HCTL-1100 to take
special action.

28

User’s Manual and Programmer’s Guide

MC-3000

335

The Stop flag affects the HCTL-1100 only in the Integral Velocity mode, and
will cause the controller to initiate a controlled decelerated stop and stay in this
mode with a command velocity of zero until the stop flag is cleared and a new
command velocity is specified.

The Limit flag is functional in any control mode, and causes the HCTL-1100 to
go into the Initialization/Idle mode immediately. This causes the HCTL-1100 to
zero the motor command and stop the motor immediately. When the limit flag is
set, none of the flags F0, F3, F5 are cleared when entering the initialization/idle
mode. Be aware that these flags are still set before invoking one of the four con-
trol modes from the initialization/idle mode. Additionally if the limit flag is set
while the HCTL-1100 is in the Trapezoidal Profile control mode, both F0 and
F5 should be cleared before reentering any of the four control modes from the
initialization mode.

The Stop and Limit flags are set by the optically coupled inputs from the J1 con-
nector, and can only be cleared by clearing the inputs to their normal levels, and
writing any value to the status register to acknowledge the error.

The value written to the status register to clear the Stop or Limit condition will
reconfigure the lower four bits of the status register, so an appropriate value
must be used.

Digital Filter (R22H R34D, R21H R33D, R20H R32D)

Figure 15

The digital filter provides programmable compensation of the closed loop sys-
tem to enhance response and stability. The compensation filter D(z) is detailed
in Figure 15.

Z~(A/256)
Z+(B/256)

Zero (R20H)
Pole (R21H)
Gain (R22H)

0(2)%

A0 >
o

The Digital Compensation Filter Form

The compensation is a first order lead filter, which in conjunction with the pro-
grammable sample timer (ROFH R15D) affects the dynamic response and stabil-
ity of the servo system. The filter parameters A (Zero), B (Pole), K (Gain) and
the timer sample parameter T, are eight-bit scaler values that can be changed by
the user at any time. The digital filter is implemented in the time domain as
shown in Figure 16.

To calculate the motor command, the filter uses the:

User’s Manual and Programmer’s Guide 29

MC-3000

Figure 16

MCn = % (Xn) - [z55 (MCn=1) + 355 () Xa-1)]

MCn
Xn
MCn-1

[last sample time]

Xn-1 = Previous (command position - actual position)
[last sample time]

Used in position control, trapezoidal profile control,
and integral velocity control modes

Present motor command output
Present (command position - actual position)
Previous motor command output

Time Domain Implementation of Digital Compensation Filter

Figure 17

The previous sample period data is cleared when the initialization/idle mode is
executed, as it should be when transitioning from one motion sequence to

current sample period’s motor command output
previous sample period’s command output,

current sample period’s position error

previous sample period’s position error

another.

The time domain implementation of the digital compensation filter shows the
filter’s use of the present sample period’s position error and the previous sample
period’s position error. This effectively is a measure of the motors speed, and is
how the controller combines position and velocity control with only an optical
encoder, and no analog tachometer. The effect of varying A, B, K, and T on the

system response is summarized in Figure 17.

INCREASE
IN PARAMETER

STABILITY

RESPONSE
TIME

STIFFNESS
(1/DEAD BAND)

A

Better

Faster

Decreases

Slightly better

Faster

Decreases

Worse

Faster

increases

B
K
t

Worse

Slower

Decreases

Effect on System Response of Varying A, B, K,and T

30

User’s Manual and Programmer’s Guide

MC-3000

3.3.6

For a further discussion of the digital filter and its characteristics on system per-
formance, refer to Appendix B, “Design of the HCTL-1100's Digital Filter
Parameters by the Combination Method.”

Sample Timer Register (ROFH R15D)

Figure 18

The sample timer determines how often the control algorithm gets executed, and
is thus the sampling period. The equation to determine the sample timer period
in seconds, is as follows:

6 (T+1)
2, 000, 000

where:
t = sample period in seconds
T = contents of sample timer register, (ROFH, R15D)

Limits on the sample timer register values are given in Figure 18 below. The

| ROFH contents | Min. Sample Rate | Max. Sampie Rate
Control Mode Minimum limits | 2 MHz 2 MMz
Position control 7 64us 2048,us
- | Proportional velocity control 7 64us 2048us
Trapezoidal profile control 15 128us 2048us
Integral velocity control 15 128us 2048us

Limits on the Sample Timer Register

MC-3000 uses a 2.00 MHz clock, and the limits on the sampling interval are
between 64 microseconds and 2048 microseconds, depending on the mode
selected.

If you are using Trapezoidal Profile control or Integral Velocity control, the
minimum sample rate should be limited to 128 microseconds. Digital closed
loop servo systems generally have better performance as their sampling fre-
quency increases, and the HCTL-1100 should be programmed with the fastest
possible sampling time for the desired control mode. However, if very slow
motor velocities are required, the sample timer may need to be programmed for
a slower sample time. This is due to the fact that the HCTL-1100 uses velocity
setpoints specified in units of quadrature counts per sample time. For a given

User’s Manual and Programmer’s Guide 31

MC-3000

system, the minimum velocity achievable decreases as the sample time (period)
increases. Figure 17, presented previously, shows the affect of T on system
response.

3.3.7 Operating Modes

The HCTL-1100 executes any one of three set up routines or four control modes
selected by the user. The three set up routines include:

* Reset
 Initialization/Idle
+ Align

The four control modes are:

+ Position Control

+ Proportional Velocity Control
+ Integral Velocity Control

+ Trapezoidal Profile Control

The HCTL-1100 switches between modes as a result of one of the following
conditions:

+ The user writes to the program counter.

« The user sets/clears flag F0, F3, or F5 by writing to the lag register.

+ The controller switches automatically when certain initial conditions are
provided by the user.

Figure 19 shows an operating mode flowchart which further details the mode
selection process.

wrlgn oM
RosH ALIGN F.7.F
RESET piN /\
LOW AESET INITIALIZATION FO NO POSITION
WRITE 00H ——] WRITE 034 SET? CONTROL
TO ROSH TO ROSH
WRITEOW LMIT w0 |7
TO ROSH PIN
o o
PROPORTIONAL INTEGRAL
seTicLear | | (CONTROLLER VELOCITY VELOCITY
Fo, P2, OR PS. CONTROL CONTROL
ONLY ONE FLAG
SHOULD BE SET l I
AT A TIME
Figure 19 Mode Selection Fiowchart.

Details are given below on each of the available set up routines and control
modes.

32 User’s Manual and Programmer’s Guide

MC-3000

3.3.8

Set Up Routines

Reset

Reset mode is entered under all conditions following a hard reset (power up) or
a soft reset (write 00H to the Program Counter RO5H).

When a hard reset is executed, the following conditions occur:

+ All output signal pins are held low, except Sign and Motor command
+ All flags (FO - FS) are cleared

* The Puise Pin of the PWM port is set ldw while the hard reset occurs, after
which the pulse output goes high for one clock cycle, then returns to a low
output

+ The Motor command port (RO8H) is set to 80H (128D)
+ The commutator logic is cleared

+ The I/O control logic is cleared

A soft reset is automatically executed

When a Soft reset is executed the following conditions occur:

« The digital filter parameters are preset to their default values as follows:
A (R20H) = E5H (229D)
B (R21H) = 40H (64D)
K (R22H) = 40H (64D)
T (ROFH) = 40H (64D)

« Status register (07H) is cleared
+ Actual position counters (R12H, R13H, R14H) are cleared to 0
+ Initialization/Idle mode is automatically entered

Initialization/Idle

The Initialization/Idle mode is entered as follows:
+ automatically from reset

+ by writing a 01H to the Program Counter (RO5H) under any conditions
* by hardware Limit input on the J1 connector

In the Initialization/Idle mode the following occurs:
+ The Initialization/Idle flag is set
+ The Motor Command Port (RO8H) is set to 80H (128D) (zero command)

« The PWM port (RO9H) is set to 00H (zero command)
+ The digital filter is cleared of previously sampled data

At this point you should program the necessary registers to execute the desired

control mode. The controller will stay in this mode until another mode is

_selected via the Program Counter.

User’s Manual and Programmer’s Guide 33

MC-3000

339

Align

The Align mode is used only when using the commutator feature of the HCTL-
1100. This mode automatically aligns multiphase motors to the HCTL-1100's
internal commutator. The Align mode can be entered only from the Initializa-
tion/Idle mode by writing 02H to the Program Counter Register (RO5H). Before
attempting to enter the Align mode, clear all control mode flags.

Control Modes

Control flags F0, F3, and F5 in the Flag Register (ROOH, ROOD) determine
which control mode is executed. Only one control flag can be set at a time. After
a control flag is set, the control mode is entered either automatically from align,
or from the initialization/idle mode by writing 03H to the Program counter
(RO5H, RO5D).

Position Control
F0, F3, F5 cleared

The Position Control mode performs point-to-point position moves with no
velocity profiling. The final desired position, or setpoint, is an absolute 24-bit
position stored into the three register’s “Command Position,” ROCH=R12D
(MSB), RODH=R13H (MID), ROEH=R14H (LSB).

Writing to ROEH=R 14D (LSB) latches all 24 bits at once for the control algo-
rithm. Therefore the command position is written in the sequence ROCH, RODH
and ROEH. The command registers can be read in any order. When the “Control
Modes” bit is set, the first sample and control sequence of the Position Control
begins, and the controller compares the setpoint to the actual position
(R12H=R18D=MSB, R13H=R19D=MID, R14H=R20D=LSB), and finds the
position error. The position error is then applied to the digital compensation fil-
ter which generates a motor command output, which is then latched into the out-
put ports. This sample and control sequence is repeated once each sample
interval as set by the sample timer.

Once at the setpoint position, the motor will remain in Position Control mode,
holding its position. It reads the actual position by first reading R14H=R20D,
which latches the upper two bytes into an internal buffer. Therefore the actual
position registers are read in the order R14H, R13H, R12H for correct instanta-
neous position data. The actual position registers cannot be written to, but they
can be zeroed by a write to RI3H. This control mode is summarized in Figure
20.

Proportional Velocity Control
F3 Set

The Proportional Velocity control mode provides velocity control using a motor
command proportional to the velocity error, times the gain value K. The other
compensation parameters, pole and zero, are not used. In this control mode, the

34

User’s Manual and Programmer’s Guide

MC-3000

Figure 20

Key features:
B Fastest movement between two COMMAND POSITION
points sm i 1— (ROCH, REOH, o
B Programmable digital filter governs z' _; a’
response £ B ERROR
B 24-bit actual position register ¢ <
B 24-bit command position register wopd | @‘?g;?.?’.’.‘{’.:.‘, L
Typical applications: So S1 52 S3 S S5 Se S7 S¢ S
B High performance printers and SAMPLE TIME
plotters

Position Control Mode

Figure 21

user specifies the desired velocity in 12 bits of integer and four bits of fractional
units, where the units are quadrature counts per sample time. (Note: quadrature
counts are equal to four times the encoder wheel pulses per revolution) Figure
21 details the command velocity format for this mode.

R24H R23H
IIII 1111 IIT1 FFFF
COMMAND VELOCITY FORMAT

Proportional Velocity Control Command Format

When the “Control Mode” bit is set, the velocity of the motor is calculated from
the difference in position, and this velocity is compared to the desired velocity to
find the velocity error. The velocity error is then multiplied by the gain factor K,
and this motor command is output to the output ports. To convert from RPM to
quadrature counts/sample time, use the formula:

Vq =(Vr)(N)()(0.01667)
where:
Vq = velocity in quadrature counts/sample time
Vr = velocity in rpm
N = 4 times the number of slots in the code wheel (i.e. quadrature counts)

t = the HCTL-1100 sample time in seconds (see Section 3.3.6)

User’s Manual and Programmer’s Guide 35

MC-3000

Figure 22

Because the command velocity registers (R24H=R36D and R23H=R35D) are
internally interpreted by the HCTL-1100 as 12 bits of integer and four bits of
fraction, the host processor must multiply the desired command velocity (in
quadrature counts/sample time) by 16 before programming it into the HCTL-
1100's command registers.

The actual velocity is computed only in this algorithm and stored in registers
R35H=R53D (MSB) and R34H=R52D (LSB). There is no fractional part in the
actual velocity registers, and they can be read in any order.

This velocity control method provides rudimentary velocity control with the
transient response governed only by the system dynamics.

Figure 22 summarizes this control mode, and Figure 23 shows the case where

Key features: -
B Fastest change in velocity [' (R24H, R23H)
B Dynamics of system governs 2T
. fesponse T -~ RROR
B 16-bit actual velocity registers z
B 16-bit command velocity registers g (RISH, R34H)
B Returns to command velocity if w1
stalled So St S2 S3 S¢ Ss S¢ S7 S¢ Se
SAMPLE TIME
Typical application:
8 Tape drives

Proportional Velocity Control Mode

the motor shaft is stalled during Proportional Velocity control.

Integral Velocity Control
F5 Set

The Integral Velocity control mode provides velocity control with controlled
acceleration and deceleration at a user-defined maximum rate. The command
velocity and command acceleration can be changed “on the fly” to provide a
very versatile velocity control technique. This approach uses an eight-bit com-
mand velocity (R3CH=R60D) and a 16-bit command acceleration. The velocity
is an integer with units of quadrature counts per sample time, and must be lim-
ited so that the difference between two sequential commands cannot be greater
than seven bits in magnitude (i.e. 127D). The acceleration is eight bits integer
(R27H=R39D) and eight bits fractional (R26H=R38D) quadrature counts per
sample time squared. The command acceleration format is detailed in Figure 24.

- 36

User’s Manual and Programmer’s Guide

MC-3000

o
s /- COMMAND VELOCITY
! L
> 12 —
= n %

L CTUAL
§ - ERROR ~ 3m
> I 1 1 . - (S L 1

POSITION — qc

Se 1 %2 83 S S5 Se S7 Se S Swo
SAMPLE TIME

Figure 23 Shaft Stalled Case for Proportional Velocity Mode
R27H R26H
OITIIII1 FFFFFFFF/256
COMMAND ACCELERATION FORMAT
Figure 24 Acceleration Command Format

The integer part has a range of 00H to 7FH. The fractional part is divided by 256
to provide fractional resolution. Because the command acceleration registers
(R27H and R26H) are internally interpreted by the

HCTL-1100 as eight bits of integer and eight bits of fraction, the PC/XT/AT
must multiply the desired command acceleration (in quadrature counts/[sample
time]z) by 256 before programming it into the command acceleration registers.
To convert from RPM/sec to quadrature counts/[sample time]?, use the follow-

ing formula:
Aq = (AD(N)(t?)(0.01667)
where:
Aq = Acceleration in quadrature counts/[sample time]2
Ar = Acceleration in rpm/sec]
N = 4 times the number of slots in the code wheel (i.e.quadrature counts)

t = The HCTL-1100 sample time in seconds

User’s Manual and Programmer’s Guide 37

MC-3000

Figure 25

This control mode actually uses Position Control to achieve the Integral Veloc-
ity control. The controller considers the desired velocity and actual velocity and
desired acceleration and calculates an incremental position move to achieve the
desired motion. This incremental position move is then filtered by the compen-
sation filter and a new motor command is output. This control mode has the
advantage of using the full digital compensation filter with integral feedback, so
the steady state velocity error is zero. This is an advantage over the normal
velocity control mode. This control mode is harder to stabilize however, since
the pole and zero are used.

If the external STOP flag is set via the appropriate pins on J1 connector, the con-
troller will automatically decelerate to zero velocity at the presently set accelera-
tion. It will stay at zero velocity until the flag is cleared and the emergency
condition is acknowledged by writing to the status register as detailed in the
“Emergency flags” section. The user can then specify new velocity profiling
data. Figure 25 summarizes the Integral Velocity control mode. Figure 26

Key features: v

B Velocity control r'r'.Lﬁ

B 16-bit command acceleration
registers veLoGTY N

B 8-bit command velocity register o\, -

B Catches up with desired position if = N
stalled

Typical application:
B X-Y table

Integral Velocity Control Mode

shows a typical Integral Velocity move's velocity versus time, and position ver-
sus time. Figure 27 shows how the Integral Velocity mode will catch up with
the desired position if the motor is temporarily stalled.

Trapezoidal Profile Control
FO Set

The Trapezoidal Profile control mode provides point-to-point position moves
while profiling the velocity, and thus controlling the acceleration. The final 24-
bit position (R2BH=R43D=MSB, R2ZAH=R42D=MID, R29H=R41D=LSB), the
maximum seven-bit (scaler) velocity (R28H=R40D), and the 12-bit integer and
four-bit fractional acceleration (same as Integral Velocity control mode) are the
inputs for this control mode. The command registers may be read or written to in
any order.

38

User’s Manual and Programmer’s Guide

MC-3000

16

¢ nf
1 _
g (3 COMMAND VELOCITY (R3CHN)
§ ‘r COMMAND ACCELERATION (RZTH, R28H)
> | NSNS SR TN BN N DU S | Ll
=t
& 190 [COMMAND POSITION
| 10 | (ROCH. RODH, ROEH)
=
(=]
Ew CTUAL
© 120 (R12H, R13H, R14H)
100 1 | 1]] 1 1
Se 81 %2 S5 S S5 S¢ 37 S¢ S Suw Su
SAMPLE TIME
Figure 26 Integral Velocity Mode Velocity Profile Versus Time
2
2 20
® .,
> 2
g o
$
o
205
& 200
4 100 d
g 140 POSTION
8 120
100 | |
Se S1 S2 S3 Su¢ Ss S¢ Sr Se 89 St Sne
SAMPLE TIME
Figure 27 Stalled Shaft Case for integral Velocity Mode

The units for these inputs are the same as discussed for the previous control
modes. The controller starts at the present command position and generates a
profile to the final position by accelerating at a constant acceleration as specified
by the acceleration command, until the maximum velocity is reached or half the
position move is completed. Then either it slews at maximum velocity until the
deceleration point, or it immediately enters the deceleration point, and deceler-
ates at a constant acceleration to a stop at the commanded position. When the

User’s Manual and Programmer’s Guide 39

MC-3000

Figure 28

controller sends the last position output to the motor command output, it enters
the Position Control mode with the same command position setpoint, and holds
that position.

When the HCTL-1100 clears the FO flag, it does not mean the motor and
encoder are actually settled at the final position yet, only that the profile is done
(final position setpoint output). The motor’s and encoder's true position can only
be determined by reading the actual position registers. The only way to deter-
mine if the motor has stopped is to read the actual position registers at succes-
sive intervals and observe no position change. The status of the Profile flag can
be observed by reading the status register, or on the appropriate pin of the J1
connector, or on the LED labeled “PROF” along the top edge of the MC-3000
PCB. While the profile flag is high, no new command data should be sent to the
controller. The Trapezoidal Profile control mode is summarized in Figure 28,
and a typical profile is shown in Figure 29.

Key features: ks
B Controlled point to point moves —————
B 24-bit tinal position registers § /
B 8-bit maximum velocity register g == ==
B 16-bit command acceleration ‘/ - - \l

registers — POSITION N
B Profile flag TRIANGULAR MOVE
Typical application: [] P——
B Robot arm g - 7N
>| - -
— rosmon \

Trapezoidal Profile Control Mode

3.3.10

Commutator

The commutator is a digital state machine that is configured by the user to prop-
erly select the phase sequence for electronic commutation of multiphase motors.
The commutator outputs are four TTL level buffered outputs, designated PHA,

PHB, PHC, and PHD which can be used to drive the amplifier switches directly,
or be configured to simulate hall effect sensor outputs (using phase overlap fea-
ture) to interface with numerous commercially available brushless motor ampli-
fiers.

The commutator is designed to work with 2, 3, or 4 phase motors of various
winding configurations and with various encoder counts. Along with providing
the correct phase enable sequence, the commutator provides programmable
phase overlap, phase advance, and phase offset.

40

User’s Manual and Programmer’s Guide

MC-3000

Figure 29

/o MAXIMUM VELOCITY (R28H)

COMMAND ACCELERATION
(R2ZTH, R26M)

VELOCITY — qt/s
o »a ®

220 FINAL POSITION
180 ™ "COMMAND POSITION: D

&

I 160

3

£ 10

[

2 120 (R12H, R13H, R14H)

Trapezoidal Control Mode Velocity Profile Versus Time

Phase advance is used for better torque ripple control. It can also be used to gen-
erate unique state sequences which can be further decoded externally to drive
more complex amplifiers and motors.

Phase advance allows the user to compensate for the frequency characteristics of
the motor/amplifier combination. By advancing the phase enable command (in
position), you can offset the delay in reaction of the motor/amplifier combina-
tion and achieve higher performance.

Phase offset is used to adjust the alignment of the commutator output with the
motor torque curves. By correctly aligning the HCTL-1100's commutator output
with the motor's torque curves, maximum motor output torque can be achieved.

The inputs to the commutator are the three encoder signals, Channel A, Channel
B, and Index; and the configuration data stored in the registers. The commutator
uses both channels and the index pulse of an incremental encoder.

The index pulse of the encoder must be physically aligned to a known torque
curve location because it is used as the reference point of the rotor position with
respect to the commutator phase enables. The index pulse should be perma-
nently aligned during motor encoder assembly to the last motor phase. This is
done by energizing the last phase of the motor during assembly and permanently
attaching the encoder code wheel to the motor shaft so that the index pulse is
active, as shown in Figure 30 and Figure 31.

Fine tuning the alignment for commutation purposes is done electronically by
the offset register (R1CH=R28D) once the complete control system is set up.
Each time the index pulse occurs, the internal commutator ring counter is reset
to 0. The ring counter keeps track of the current position of the rotor based on
the encoder feedback. When the ring counter is reset to 0, the commutator is

User’s Manual and Programmer’s Guide 41

MC-3000

POSITIVE OIRCCTION e

TORQUE

PHA EXAMPLE: 4 PHASE, 2 POLE MOTOR

POSITION ENCODER INDEX PULSE AT POINTS (1) OR (2)

index Puise Alignment to Torque Cycles for Commutator

Figure 30
CHANNEL A & 8 DETECTORS
INDEX PULSE
DETECTOR
CODEWHEEL MOTOR
INDEX PULSE
DC POWER SUPPLY
$3 ‘0 o-
ENCODCER ol-)
BooY
CHANNEL A& B
DATA TRACK
ENCODER
CODEWHEEL
Al+)
Figure 31 Motor and Encoder Assembly With Index Pulse Aligned to Last Phase of

Motor

reset to its origin (last phase going low, phase A going high) as shown in Figure
32.

42

User’s Manual and Programmer’s Guide

MC-3000

Figure 32

JIPHASE ENCOOF.R: 90 COUNTS/REVOLUTION
FULL COUNTS
fUNG: 9
INDEX PULSE
CASE 1 2 3 4 OCCURS AT
X 3 2 2 2 THE ORIGIN
Y 0 1 1 1 .
OFFSET 0 0 2 2
ADVANCE 0 0 0 1
OUTPUT VOLTAGE
INDEX COUNTS

PULSE , . , .
(INPUT) 84 85 8687 88 89f0 1 2!3 4 Sic 7 8i9 10N

PHC

+RING! Y

PHB

[v] x [v {v] x |v

! -RING!Y)

PHO

RINGD :

EAD

RING'? {

e x lvl x |vl

osrss'r-j S Aovance

Commutator Configuration.

PHB

The output of the commutator is available as PHA, PHB, PHC, PHD on the J1
connector. The HCTL-1100's commutator acts as the electrical equivalent of the
mechanical brushes in a DC brush motor. Therefore, the outputs of the commu-
tator provide only proper phase sequencing for bidirectional operation. The
magnitude information is provided to the motor via the motor command (DAC)
or PWM (Pulse) outputs. The outputs of the commutator must be combined with
the outputs of one of the motor ports to provide proper DC brushless and stepper
motor control. Figure 33 shows an example of circuitry which uses the output of
the commutator with the Pulse output of the PWM port to control a DC brush-
less or stepper motor.

User’s Manual and Programmer’s Guide 43

MC-3000

Figure 33

SICN

o N\
PWM PULSE D— A

HCTL-1100
O~
TTL OUTPUT
PHA =~ TO POWER
AMPLIFIERS
PHB c
COMMUTATOR

PHC

PWM Interface for Commutator

A similar procedure could be used to combine the commutator outputs with the
DAC linear amplifier interface output to create a linear modulation amplifier for
a DC brushless or stepper motor.

Commutation Configuration Registers

The commutator is programmed by the data in the following registers. Figure 32
shows an example of the relationship between all the parameters.

Status Register (RO7H=R07D)

+ Bit#l
0 = 3 phase configuration, PHA, PHB, PHC are active outputs
1 = 4 phase configuration, PHA - PHD are active outputs

+ Bit#2
0 = Rotor position measured in quadrature counts (4x decoding)
1 =rotor position measured in full counts (1 count = codewheel bar and space)

Bit #2 only affects the commutator's counting method. This includes the:
+ ring register (R18H=R24D)

* Xand Y registers (R1AH=R26D, RIBH=R27D)

+ offset register (R1CH=R28D)

» velocity timer register (R19H=R25D)

* maximum advance register (RIFH=R31D)

Quadrature counts (4x decoding) are always used by the HCTL-1100 as a basis
for position, velocity and acceleration control.

User’s Manual and Programmer’s Guide

MC-3000

Figure 34

Ring Register (R18H=R24D);

The ring register is defined as one electrical cycle of the commutator which cor-
responds to one torque cycle of the motor. The ring register is a scaler and deter-
mines the length of the commutation cycle measured in full or quadrature counts
as set by Bit 2 in the status register (R07H=R07D). The value of the ring must be
limited to the range of 0 to 7FH (127D). The ring counter register is illustrated
in Figure 34.

D eoax
A

2N
¥

"
3 ToRout
CYCLL MoTOR
B Ring register determines the number of encoder
counts in a torque cycle
B Ring register value may be in full or
quadrature counts

B Ring counter cleared by index pulse
B Ring = 16

Commutation Ring Counter Register

X Register

This register contains scaler data which sets the interval during which only one
phase is active.

Y Register (RIBH=R27D)

This register contains scaler data which set the interval during which two
sequential phases are both active. Y is phase overlap.

X and Y must meet the following criteria:

X +Y = Ring/(# of phases)

These three parameters define the basic electrical commutation cycle.
Offset Register (R1CH=R28D)

The offset register contains 2's complement data which determines the relative
start of the commutation cycle with respect to the index pulse. Since the index

User’s Manual and Programmer’s Guide 45

MC-3000

Figure 35

pulse must be physically aligned to the rotor, offset performs fine alignment
between the electrical and mechanical torque cycles.

The Hold commutator flag (F4) in the status register (RO7H) is used to decouple
the internal commutator counters from the encoder input. Flag (F4) can be used
in conjunction with the offset register to allow the user to advance the commuta-
tor phases open loop. This technique may be used to create a custom commuta-
tor alignment procedure.

For example, in Figure 32, Case 1, for a three phase motor where the ring =9, X
=3, and Y =0, the phases can be made to advance open loop by setting the Hold
commutator flag (F4) in the flag register (RO7H=R07D). When the values 0, 1, 2
are written to the offset register, phase A will be enabled. When the values 3, 4,
or 5 are written to the offset register, phase B will be enabled. And when the val-
ues 6, 7, or 8 are written to the offset register, phase C will be enabled.

No values larger than the value programmed into the Ring register should be
programmed into the offset register. The offset register is summarized in Figure
3s.

| ! 1 1
INDEX T T
LJ | |
PHASE A _—'[jl .
PHASE B
PHASE C
f -+
PHASE D 1 !
| | |
|] |
01 2 34526 78910 11121314150
H Ring = 16
B Offset = -3

Commutation Offset Register

The velocity timer register and the maximum advance register linearly incre-
ment the phase advance according to the measured speed of rotation up to a set
maximum. The velocity timer register (R19H=R25D) contains scaler data which
determines the amount of phase advance at a given velocity. The phase is inter-
preted in the units set for the ring counter by Bit #2 in RO7H=R07D. The veloc-
ity is measured in revolutions per second.

46

User’s Manual and Programmer’s Guide

MC-3000

Figure 36

Advance = (Nf)(v)(dt)
where:
Nf = full encoder counts per revolution.

v = velocity (revolutions per second)

dt=16(R19H + 1)

f external clk
f external clk =2.0 MHz

The maximum advance register (R1IFH=R31D) contains scaler data which sets
the upper limit for phase advance regardless of rotor speed.

Figure 36 shows the relationship between the phase advance registers.

Note: If you are not using the phase advance feature, set both R19H=R25D and
R1FH=R31D to 0.

The phase advance feature is further illustrated in Figure 37.

ADVANCE
Advance = NyAt (COUNTS)
wax |
Where At = :IG_(_R1_9H_+]_) ADvance
fexternal clk
N = Encoder counts/rev SLOPE = Nat
V = Velocity (rev/sec)

VELOCITY
(REVOLUTIONS/SECOND)

Commutation Phase Advance Registers

Commutator Use and Constraints

Quadrature Encoder Counts

When you choose a three channel encoder to use with a DC brushless or stepper
motor, keep in mind that the number of quadrature encoder counts (four times
the number of slots in the encoders codewheel) must be an integer multiple (1x,
2X, 3X,...) of the number of pole pairs in the DC brushless motor or steps in a
stepper motor. To take full advantage of the commutators overlap feature, the
number of quadrature counts should be at least three times the number of pole
pairs in the DC brushless motor or steps in the stepper motor.

User’s Manual and Programmer’s Guide 47

MC-3000

Figure 37

DIRECTION
OF ROTATION

Phase Advance Feature for Commutator

For example, a 1.8 degree (200 steps/revolution) stepper motor should employ
at least a 150 slot code wheel = 600 quadrature counts/revolution = 3*200 steps/
revolution.

Some standard values for encoder line count for use with the MC-3000 are 192
line and 360 line, particularly if you are using motors with a large number of
poles. Hewlett Packard makes optical encoders with these resolutions.

N ical C .

There are several numerical constraints the user should be aware of:

» The parameters of Ring, X, Y, and Max advance must be positive numbers (0
to 7FH).

The following equation must be satisfied:
(-128D) <<= 1.5 *Ring + Offset = MaxAdvance <<= 7FH (-127D)

In order to utilize the greatest flexibility of the commutator, note that the com-
mutator works on a circular ring counter principle, whose range is defined by the
Ring register (R18H). This means that for a ring of 96 counts and a needed off-
set of ten counts, numerically the offset register can be programmed as 0AH
(10D) or AAH (-86D). -The latter satisfies the above equation.

If you set Bit 2 in the status register to allow the commutator to count in full
counts, you can chose a higher resolution codewheel for precise motor control
without violating the commutator constraints equation.

48

User’s Manual and Programmer’s Guide

MC-3000

Example

To commutate a three-phase 15 degree/step Variable Reluctance motor attached
to a 192 count encoder: ’

1. Select three phase and quadrature mode for the commutator by writing 0 to
RO7H.

2. With a three phase 15 degree/step variable reluctance motor the torque
cycle repeats every 45 degrees or eight times/revolution.

3. Ring register =
(4)(192) counts/revolution
8/revolution
= 96 quadrature counts

=1 commutation cycle

User’s Manual and Programmer’s Guide

49

MC-3000

4. By measuring the motor torque curve in both directions, you may deter-
mine that you need an offset of three mechanical degrees and a phase
‘overlap of two mechanical degrees.

Offset = 3 degrees (4)(192)/360 ~= 6 quadrature counts
To create the three mechanical degree offset, program the offset register
(R1ICH=R28D) with either A6H (-90D) or 06H (+06D). However,

because 06H (+06D) would violate the commutator constraints, use Equa-
tion, A6H (-90D).

Y = overlap = (2 degrees)(4)(192) ~= 4
360 degrees

X +Y =96/3
Therefore, X=28
Y=4

For the purposes of this example, the velocity timer and maximum
advance are set to 0.

Steps for programming the HCTL-1100 are summarized in Figure 38. An exam-

W Configure status register B Choose X and Y register values
B Choose codewheel® X = number of counts that one phase is active
— CPR or 4X CPR must be an integer muitiple of: Y = number of counts that two phases are active
1) Motor steps per revolution OR (overlap)
2) Number of commutations per revolution X+ Y = Rin

B Determine ring value®

number of phases

(Cc) (CPR) B Check commutator constraints equation

Ring register = ~——=—— > 3 or 4 (integer value) 3 .
- Tc .- . . -128 < = ring + offset + max advance < 127
Where: Cc = Commutator count configuration) 2
(1 = Full counts, 4 = quad counts) Ring > -offset + max advance
CPR = Codewheel counts per revolution M Adjust offset register for optimum motor
Tc = Number of torgue cycles performance in both directions

i . .
per revolution B Check commutator constraints equation

*Note: Higher ring

Figure 38

may motor p

Programming the HCTL-1100 Commutator

ple of programming the HCTL-1100 for a four phase delta wound brushless
motor is shown in Figure 39 with it’s associated speed/torque curve in Figure
40.

Programming steps for a three phase wye wound brushless motor are shown in
Figure 41. Another programming example for a 200 step four phase hybrid step
motor is given in Figure 42 and its performance summarized in Figures 43, 44,
45, and 46.

50

User’'s Manual and Programmer’s Guide

MC-3000

B Select full count, four phase, sign reversal inhibit
B Eight commutations per revolution
Try codewheel = 192

1—:—2- = 24 (integer)

B Determine ring value
. Ring = 1%2 = 96

B Choose X and Y register values
X=26,Y=0 . .X+Y=%

B Check commutator constraints equation
-128 < 3 (96) + 0 + 0 < 127
.. constraints equation fails
B Choose negative offset equal to ring
-128 < g (96) - 96 + 0 < 127
.. constraints equation is satisfied
B Adjust offset for best performance

Oftset = - ring +%X= - 84

B Check commutator constraints equation

Figure 39 Four Phase Delta Wound Motor Commutator Example

S e

~l

VELOCITY
(RADIANS/SECOND)

= A ARRN

E
i
\
/
/4

E &8 8 2 8 3

PITTMAN 4113 B274
Fougnusemwouuolausmsssum

0 0.02 0.04 006 0.08 0.10 0.12 0.14 0.16 0.18 0.20

B VMOoTOR = 30V

_ TORQUE (NEWTON-METERS)

Figure 40 Speed - Torque Curve For Example of Figure 39

User’s Manual and Programmer’s Guide 51

MC-3000

H Select full count, three phase, sign reversal inhibit
B Twelve commutations per revolution
Try codewheel = 192
192

. = 16 (integer)

B Determine ring value

.. Ring = % = 96

B Choose X and Y to generate 6 equal states
X=16,Y =16 .. X+ Y = 96/3

B Check commutator constraints equation
-128 < -g-(95)+0+051z7
.. constraints equation fails

B Choose negative offset equal to ring
-128 < 3(96)- 96 + 0 < 127
.. constraints equation is satisfied

B Adjust offset for best performance
offset = - ring + X = - 80 -

B Check commutator constraints equation

Figure 41 Three Phase Wye Wound Brushless Motor Commutator Programming
Example

52 User’s Manual and Programmer’s Guide

MC-3000

W Select quad counts, four phase,
sign reversal inhibit

N Choose codewheel
200 _ 5o torque cycles/rev

4
. (4) (500)

try codewheel = 500 .. 200 = 10 (integer)

H Determine ring value

.. Ring = (4)5(# = 40

B Choose X and Y register values

=40 _ =
X=7=10 Y=0

B Check commutator constraints
-128 < g(w) +0+0 <127
.. constraints equation is satisfied
B Adjust offset for best performance
B Check commutator constraints equation

Figure 42 200 Step Four Phase Hybrid Step Motor Commutator

VELOCITY
(RADIANS/SECOND) 15

10

Superior Electric SLO SYN MOS1-FC02
200 Step/rev hybrid motor

0 0.08 0.10 0.1 0.20 0.25

@ IMOTOR = 1A
B Set speed, measure torque

Figure 43 Speed/Torque Curve of Two Phase on Step Motor

User’s Manual and Programmer’s Guide

53

MC-3000

380 Supertor Electric SLO SYN M0S1-FC02
300 200 Step/rev hwbrid motor
250
VELOCITY 20 - OVERLAP AND ADVANCE
(RADIANS/SECOND) \\f‘/ AVANCE.
0 oveRLir
-)% o bveniar
NO ADVANCE
><,~onén LOOP WITHOUT
so COMMUTATOR
B IMOTOR = 1A °
B PWMport = 100%. o 0.05 0.10 0.15 0.20 0.25
B Set torque, measure speed. TORQUE (NEWTON-METERS)
Figure 44 Speed/Torque Curve of One Phase on Commutated Step Motor

350
Superior Electric SLO SYN MO081-FC02
200 200 Step/rev hybrid motor
\/w'menup ADVANCE'
250 \
VELOCITY 20 ADVANCE
(RADIANS/SECOND) _ r NO
- NO OVERLAP,
100 | NO ADVANCE
L OPEN LOOP WITHOUT
. COMMUTATOR
” " _ L
B IMOTOR = 1A 0 —— —%—;—i

H PWM port = 100%. ° 0.05 0.10 015 . 020 0.25
B Set torque, measure speed. TORQUE (NEWTON-METERS)

Figure 45 Speed/Torque Curve of Two Phase on Commutated Step Motor

54 User’s Manual and Programmer’s Guide

MC-3000

Figure 46

E LN T T T
z Superior Electric SLO SYN MO81-FCO2
3 1e00 200 Step/rev hybrid motor
g 16%0 2 PHASE ON
8 1400 T OPTIMIZED
8 \ | 2puaseon
& 1200 \
w
& 1000
2 v4 1. PHASE ON "
5 wo OPTIMIZED
[-]
600 4
é_ P T~ open Loop
z 400 - RESPONSE
g 24 1 puaSE ON
s 200 I I
e o
) 0050 0.100 0.150 0.200 0.250
TIME (SECONDS)

Step Response of Step Motor System for 16V Steps

User’s Manual and Programmer’s Guide

55

MC-3000

56

User’s Manual and Programmer’s Guide

MC-3000

4.1

Programming the MC-3000

Introduction to Programming the MC-3000

Figure 47

The MC-3000 motion controller provides three approaches to user program-
ming, including an MCBasic interpreter, a Windows 3.1 based point and click
menu of motion commands and separate Dynamic Link Libraries (DLL), and a
set of “C” programming language source code libraries allowing integration of
the MC-3000 motion control commands with a user supplied “C” language
compiler to produce user application programs. These programming options are
illustrated in Figure 47.

Complete user motion control application development

MC-3000 using MCBasic, which incorporates the BASIC pro-

. gramming language with the MC-3000 specific motion
Programming commands and functions
Options
Simple MC-3000 motion control system testing with a
Windows 3.1 Graphical User Interface, using the Win-
dows based “Motion Control Center” Environment, or
complete user motion control application development
using the MC-3000 Dynamic Link Libraries (DLL)
and a user supplied Windows application program
developed in Visual Basic, Borland C, or other Win-
dows based Language

Complete user motion control application development
using the MC-3000 “C” language Motion Libraries
and a user supplied “C” compiler and application pro-

The MC-3000 Offers Multiple Software Programming Options

4.2

Programming the MC-3000 with MCBasic

- The MCBasic interpreter uses a set of motion control commands and functions

specific to the MC-3000 combined with a “BASIC” programming language
interpreter, to allow interactive testing of the MC-3000 operation, and complete
user program application development. MCBasic is a DOS based program, sim-
ilar to the BASIC interpreter provided with many PCs.

User’s Manual and Programmer’s Guide 57

MC-3000

The MCBasic commands and functions for controlling the MC-3000 motion are
identical to the “C” libraries provided in source code form on the distribution
disk. If the user has detailed questions on these commands syntax, semantics, or
use, the “C” language libraries should be printed out and reviewed.

The “BASIC” language commands provided with MCBasic are generally stan-
dard ANSI Basic compliant BASIC. The following is an overview on the use of
MCBEasic.

An interactive environment is provided, so that a command can be entered at the
MCBasic prompt and it will be executed immediately, or a line with a line num-
ber can be entered at the mcBASIC prompt and it will be added to the program

in memory. Programs in memory can be saved to disk, or programs on disk can
be loaded into program memory for execution.

Line numbers are not strictly required, but are useful if the interactive environ-
ment is used for programming. For longer program entry one might prefer to use
an ASCII text editor, and in this case lines can be entered without numbers,
however, one will not be able to alter the numberless lines within the interactive
environment. '

Command names and function names are not case sensitive, so that “Run” and
“RUN” and “run” are equivalent and “abs()” and “ABS()” and “Abs()” are
equivalent. However, variable names ARE case sensitive in MCBasic, so that
“d$” and “D$” are different variables. This differs from some BASIC imple-
mentations where variable names are not case sensitive.

All programs are stored as ASCII text files.

Spaces are required as separators between all commands names, function
names, operators, and parameter values. Specifically, the following syntax is
acceptable:

while (get_act_pos < 1000) ...

but this syntax is not acceptable:
while (get_act_pos<1000) ...

TRUE is defined as -1 and FALSE is defined as 0 in the default distribution of
mcBASIC. ‘

Assignment must be made to variables. This differs from some implementations
of BASIC where assignment can be made to a function. Implication:
“INSTR(3, x$, y$) = z$” will not work under mcBASIC.

ENVIRON: The ENVIRON command requires BASIC strings on either side of
the equals sign. Thus:

environ “PATH” = “/usr/bin”

- 58

User’s Manual and Programmer’s Guide

MC-3000

It might be noted that this differs from the implementation of ENVIRON in
some versions of BASIC, but MCBasic's ENVIRON allows BASIC variables to
be used on either side of the equals sign. Note that the function ENVIRON$() is
different from the command, and be aware of the fact that in some operating sys-
tems an environment variable set within a program will not be passed to its par-
ent shell.

The MCBasic motion control commands and BASIC language commands are
presented in the following tables. For a detailed description on the use of these
commands, the user is referred to the EXER.C source code file for the MC-3000
motion control commands, or a standard BASIC language reference book for the
BASIC commands and functions. Several example programs follow these
descriptions to start you off in using MCBasic.

TABLE 11 Control Modes
Command Name Function
sel_mode Enter Control mode selection loop
trap_mode Enter Trapezoidal profile mode
prop_mode Enter Proportional Velocity mode
pos_mode Enter Position Control mode
int_mode Enter Integral Velocity mode
init Enter Initialization/Idle mode
TABLE 12 Position Commands

Command Name Function
set_cmd_pos N Set command position to N
(-8388608 <= N <= 8388607) [q.counts]
get_cmd_pos Display command position. [g.counts]
set_final_pos N Set final position to N, for trap_mode
(-8388608 <= N <=8388607) [q.counts]
get_final_pos Display final position [g.counts]
get_act_pos Display actual position. [g.counts]
clr_act_pos Clear actual position to zero [g.counts]

User’s Manual and Programmer’s Guide 59

MC-3000

TABLE 13 Velocity Commands
Command Name Functién
set_max_vel N Set maximum velocity to N
(0 <= N <= 127) [g.counts/sample time]
get_max_vel Display Maximum velocity
[q.counts/sample time]
set_prop_vel N Set Proportional Velocity to N
(-2048 <= N <= 2048) [g.counts/sample time]
get_prop_vel Display Proportional Velocity
[g.counts/sample time]
set_int_vel N Set Integral Velocity to N
(-127 <= N <= 127) [q.counts/sample time]
get_int_vel Display integral Velocity
[g.counts/sample time]
get_act_vel Display actual velocity
[q.counts/sample time]
TABLE 14 Acceleration Commands
Command Name Function
set_accel N Set acceleration to N
(0 <= N <= 65535)[q.counts/sample time2*256]
get_accel Display acceleration
TABLE 15 Compensation Filter Commands
Command Name Function
set_gain N Set compensation gain
(0 <=N <=225)
get_gain Display compensation gain.
set_pole N Set compensation pole
(0 <= N <= 255)
get_pole Display compensation pole
set_zero N Set compensation zero
(0 <= N <= 255)
60 User’s Manual and Programmer’s Guide

MC-3000

TABLE 15 Compensation Filter Commands

Command Name

Function

get_zero Disblay compensation zero

set_timer N Set sample timer to N
(0 <= N <= 255)

TABLE 16 Motor Output Commands

Command Name Function

set_dac N Set DAC output register value
(0 <= N <= 255)

get_dac Display DAC output register value

set_pwm N Set PWM register output value
(-100 <= N <= 100)

get_pwm Display PWM register value

set_bipolar Set bipolar DAC output mode.

set_unipolar Set unipolar DAC output mode

set_sign_rev N

Set PWM sign reversal on or off.
(N=1 for on, N=0 for off)

TABLE 17 Commutator Commands

Command Name
align
open_loop_comm
closed_loop_comm
set_ring N

get_ring
set xN

get_x
set yN

get y
set_offset N

Function

Align commutator via encoder
Open loop commutation
Closed loop commutation

Set commutator ring register to N
(0 <= N <= 127) [q.counts/torque cycle]

Display commutator ring value

Set commutator X register to N
(0 <= N <=127)

Display commutator X value

Set commutator Y register to N.
(0 <=N<=127)

Display commutator y register value

Set commutator offset register to N
(-127 <= N <= 127)

User’s Manual and Programmer’s Guide

61

MC-3000

TABLE 17 Commutator Commands

Command Name
get_offset
set_max_adv N

get_max_adv
set_vel_timer N

comm_count N

num_phases N

Function

Display commutator offset register.

Set commutator maximum advance

(0 <=N<=127)

Display commutator maximum advance

Set commutator velocity timer

(0 <=N<=127)

Set commutator units for g.counts or enc
N=0 for q.counts, N=1 for encoder counts

Set number of phases to 3 or 4
(N=3 for 3 phase, N=4 for 4 phase)

TABLE 18 Miscellaneous Commands

Command Name
reset
set_status N

get_status
clr_emerg_flags
delay N

quit
set_do N

get_di
set_base N

get_base
fine_home N

home
regin N

regout N M

Function
Soft reset of HCTL-1100

Set status register to N.
(0 <= N <= 255)

Display status
Clear emergency flags

Time delay, in N multiples
(0 <= N <=2147483647) [milliseconds]

Quit program, return to DOS

Set digital output byte to N

(0 <= N <= 15)

Display digital input byte

Set MC-3000 base address
(512<=N<=1023)

Display MC-3000 base address variable
Flag indicating if index used for homing
(N=1 if index used, N=0 otherwise)
Home axis, uses DIO, and Index

Register input from HCTL-1100 reg. N
(0 <= N <= 60; restricted to user registers)

Register Out to HCTL-1100 reg. N, val M.
(0 <= N <= 60; restricted to user registers)
(0 <= M <= 255)

62 User’s Manual and Programmer’s Guide

MC-3000

MCBasic “BASIC” Language Commands

MCBasic Command/Function
ABS(number)

ASC(string)
ATN(number)
CALL subroutine-name

CASE ELSE | IF partial-expression |
constant

CHAIN [MERGE] file-name [, line-num-
ber] [, ALL]

CHDIR pathname
CHR$(number)

CINT(number)

CLEAR

CLOSE [[#]file-number]...

COMMON variable [, variable...]
COS(number)

CSNG(number)

DATA constant],constant]...

DATE$

DEF FNname(arg...)] = expression
DEFDBL letter{-letter](, letter]-letter])...

DEFINT letter[-letter](, letter][-letter])...

Purpose

Returns Absolute Value of num-
ber

Returns ASCII value of first char-
acter in string

Returns Arctangent of number,
when number is in radians

Calls a subroutine
Case statement

To transfer control to the specified
program and pass (chain) vari-
ables to it from the current pro-
gram

To change from one working
directory to another

To convert an ASCII code to its
equivalent character

To round numbers with fractional
portions to the next whole number
or integer

To set all numeric variables to
Zero

To terminate output to a disk file
or device

To pass Variables to a chained
program

To return the cosine of the range
of number

To convert number to single preci-
sion

To store the numeric and string

constants that are accessed by
the program READ statements

To set or retrieve the current date

to define and name a function
written by the user

To declare variable types as dou-
ble

To declare variable types as inte-
ger

User’s Manual and Programmer’s Guide

63

MC-3000

MCBasic Command/Function

DEFSNG letter{-letter](, letter[-letter])...

DEFSTR letter]-letter](, letter{-letter])...
DELETE line[-line]

DIM variable(elements...)[variable(ele-
ments...)]...

EDIT

ELSE

ELSEIF

END IF | FUNCTION | SELECT | SUB

ENVIRON variable-string = string

ENVIRONS$(variable-string)

EOF (device-number)

ERASE variable[, variable]...
ERL
ERR

ERROR number

EXP(number)

FIELD [#] device-number, number AS

string-variable [, number AS string-vari-

able...]
FILES filespec$

FUNCTION

FOR counter = start TO finish [STEP
increment]

Purpose

To declare variable types as sin-
gle precision

To declare variable types as
string

To delete program lines or line
ranges

To specify the maximum values
for array variable subscripts and
allocate storage accordingly

To display a specified line
Goes with IF... THEN...-ELSE...
Goes with IF...ELSEIF...

Ending terminator for respective
structures

To modify parameters in the envi-
ronment for PATH or to pass
parameters to a child by inventing
a new path parameter

Allows the user to retrieve the
specified environment string

To return -1 (TRUE) when the end
of a sequential or communications
file has been reached

To eliminate arrays from a pro-
gram

To return line number associated
with an error

To return error code associated
with an error

To simulate the occurrence of an
error, or to allow the user to define
error codes

To return E (the base of natural
logarithms) to the power of x.

To allocate space for variables in
a random file buffer

To print the names of the files
residing on the specified drive)

Function definition

To execute a series of instructions
a specified number of times in a
loop

64

User’s Manual and Programmer’s Guide

MC-3000

MCBasic Command/Function

GET [#] device-number [, record-num-

ber]
GOSUB line | label
GOTO line | label

HEX$(number)

IF expression THEN [statement [ELSE

statement]]

INPUT [# device-number]|[;][“prompt
string”;Jlist of variables

INSTR([start-position,] string-
searched$, string-pattern$)
INT(number)

KILL file-name

LEFT$(string$, number-of-spaces)
LEN(string$)

LET variable = expression

LINE INPUT [[#] device-number,][*-
prompt string”;] string-variable$
LIST line[-line]

LOAD file-name
LOC(device-number)
LOF(device-number)

LOG(number)

LSET string-variable$= expression

Purpose

To read a record from a random
disk file into a random buffer

To branch to a subroutine

To branch unconditionally to a
specified line number

To return a string that represents
the hexadecimal value of the
numeric argument

To alter program flow based on a
conditional expression check

To prepare the program for input
from the terminal during program
execution, or read data items from
a sequential file and assign them
to program variables

To search for the first occurrence
of a string in another string

To truncate an expression to a
whole number

To delete a file from a disk

To return a string that comprises
the leftmost n characters of a
string

To return the number of charac-
ters in a string

To assign the value of an expres-
sion to a variable

To input an entire line from the
keyboard into a string

to list all or part of a program to
the screen

To load a file from disk ihto mem-
ory

To return the current position in
the file

To return the length (number of
bytes) allocated to the file

To return the natural logarithm of
a number

To move data from memory to a
random file buffer and left justify it
in preparation for a PUT state-
ment

User’s Manual and Programmer’s Guide

65

MC-3000

MCBasic Command/Function
MERGE file-name

MKDIR pathname
NAME old-file-name AS new-file-name
NEW

NEXT counter
OCT$(number)

ON variable GOTO|GOSUB line[line,-
line,...]

ON ERROR GOSUB line .

OPEN OJI|R, [#]device-number, file-
name [,record length] FOR...
OPTION BASE number

POS

PRINT [# device-number,]JUSING for-

mat-string$;] expressions...
PUT [#] device-number [, record-num-

ber]

RANDOMIZE number
READ variable[, variable]...
REM string

RESTORE line

RETURN

RIGHT$(string$, number-of-spaces)

RMDIR pathname
RND(number)

Purpose

To merge the lines from an ASCII
program file into the program
already in memory

To create a subdirectory
To change the name of a disk file

To delete the program currently in
memory

To terminate a FOR loop

To convert a decimal value to
octal

To branch to one of several speci-
fied line numbers depending on
the value returned when an
expression is evaluated

To enable error trapping and
specify the first line of the error
handling subroutine

To establish input/output to a file
or device

To declare the minimum value for
array subscripts

To return the current cursor posi-
tion
To output a display to the screen

To transfer graphics images to the
screen

To reseed the random number
generator

To read values from a DATA
statement

To allow explanatory remarks to
be inserted into a program

To allow DATA statements to be
reread from a specified line

To terminate a subroutine and
return to the calling program

To return the rightmost number of
characters of a string

To delete a subdirectory

To return a random number
between 0 and 1

66

User’s Manual and Programmer’s Guide

MC-3000

MCBasic Command/Function
RSET string-variable$= expression

RUN [line][file-name]
SAVE file-name
SELECT CASE expression

SGN(number)
SIN(number)

SPACES$(number)
SPC(number)

SQR(number)

STOP

STR$(number)

STRINGS$(number, ascii-value|string$)
SUB subroutine-name

SWAP variable, variable

SYSTEM
TAB(number)
TAN(number)

TIMES
TIMER

TROFF
TRON
VAL(string$)

WEND

Purpose

To move data from memory to a
random-file buffer and right justify
it in preparation for a PUT state-
ment

To execute the program currently
in memory

To save a program from memory
to disk

To select from a case list of
options
To return the sign of a number

To calculate the trigonometric sine
of a number, in radians

To return a string of spaces

To skip a specified number of
spaces in a PRINT statement

Returns the square root of a num-
ber

To terminate program execution
and return to command level

To return a string representation
of the value of a number

To return a string of length n
whose characters all have the
same ASCII code

Subroutine name

To exchange the values of two
variables

To return to DOS
Spaces to position on screen

To calculate the trigonometric tan-
gent of a number, in radians

To set or retrieve the current time

To return single precision floating-
point numbers representing the
elapsed number of seconds since
midnight or system reset

To turn off the trace of execution
of program statements

To turn on the trace of execution -
of program execution

Returns the numerical value of

string

The end of a while statement

User’s Manual and Programmer’s Guide

67

MC-3000

MCBasic Command/Function Purpose

WHILE expression To execute a series of statements
in a loop as long as the given
expression condition is true

WIDTH [# device-number,] number To set the printed line width in
number of characters for the
screen and line printer

WRITE [# device-number,] element [, To output data to the screen
element]....
label: Label for goto statement

The MCBasic language can load the following example programs to test the
operation of the MC-3000. The files are provided on the MC-3000 distribution
program disk.

L]

pos.cmd- Position control command file

trap.cmd -Proportional Velocity control command file
prop.cmd - Proportional Velocity control command file
int.cmd - Integral Velocity control command file
comm.cmd - Commutator Example command file

These files are described in the following sections.

68

User’s Manual and Programmer’s Guide

MC-3000

4.2.1 POS.CMD. Position Control

The Position Control command file “POS.CMD” contains the following com-

mands:
set_base 768
set_gain 10
set_zero 240
set_pole O
set_ timer 40
clr_act_pos
set_cmd_pos 0
pos_mode
delay 100
set_cmd_pos 10000

quit

To invoke this program from the DOS prompt, type:

MCBasic
LOAD "pos.cmd"
RUN

or type:
MCBasic pos.cmd

User’s Manual and Programmer’s Guide

MC-3000

4.2.2 TRAP.CMD. Trapezoidal Control

The Trapezoidal Profile control command file “TRAP.CMD” contains the fol-
lowing commands: .

set_base 768
reset

set_gain 5
set_zero 240
set_pole 0

set_ timer 40
clr_act_pos
set_max_vel 10
set_accel 2
sel_mode
set_final_pos 100000
trap_mode
delay 3000
set_final_pos 0
set_accel 10
trap_mode
delay 3000

quit

To invoke this program from DOS, type:

MCBasic
LOAD "trap.cmd"
RUN

or type
MCBasic Trap.cmd

User’s Manual and Programmer’s Guide

MC-3000

4.2.3

PROP.CMD. Proportional Velocity Control

4.2.4

The Trapezoidal Profile control command file “PROP.CMD” contains the fol-
lowing commands:

set_base 768
set_gain 2

set_ timer 40
set_prop_vel 400
sel_mode
prop_mode

quit

To invoke this program from DOS, type:

MCBasic
LOAD "prop.cmd"
RUN

or type:
MCBasic Prop.cmd

INT.CMD Integral Velocity Control

The Integral Velocity control command file “INT.CMD” contains the following
commands:

set_base 768
set_gain 10
set_zero 240
set_pole O
set_ timer 40
set_int_vel 20
set_accel 4

sel_mode

User’'s Manual and Programmer’s Guide 4l

MC-3000

int_mode
delay 500
set_int_vel 0
quit

To invoke this program from DOS, type:

MCBasic
LOAD "int.cmd"
RUN

or type:
MCBasic Int.cmd

4.2.5 Commutator Example

The commutator example control command file “COMM.CMD?”, contains the
following commands:

num_phases 3
comm_count 0
set_ring 96
set x 16
set y 16
set_offset -96
set_max_adv 0
set_vel_timer 0
set_sign_rev 1
set_gain 10
set_zero 240
set_pole 0
set_ timer 40

clr_act_pos

User’s Manual and Programmer’s Guide

MC-3000

Figure 48

set_max_vel 50

set_accel 2

set_final_pos 100000

trap_mode

quit
To invoke this program from DOS, type:
MCBasic
LOAD "comm.cmd"
RUN
This program is more involved than the others, and warrants a more detailed dis-
cussion. This example is for a three phase motor with eight pole pairs (eight
electrical torque cycles per mechanical revolution). It uses a 192 line encoder. It
also assumes a commercial brushless amplifier which requires hall effect sensor

inputs, so the commutator outputs need to have 50 percent duty cycle, with
overlap 120 electrical degrees from phase to phase, as shown in Figure 48.

INDEX U U—

| _ I'—‘

PHB | : L

I |

gﬁ,lllIHIOIIIIIIILHHIllll‘}lllllllel‘lllllllalellHHI‘LIHlHLLIHHILLIIlllILLllllIlLLIHIIILLII!IIIIBLIIIHILLI
Commutator Exampie

The first command program line “num_phases 3" sets the commutator for a
three phase motor.

The second command “comm_count 0" sets the commutator for quadrature
counts for all units being programmed (instead of full encoder counts).

“Set_ring 96" sets the ring counter to 96 quadrature counts. This value is found
as follows:

User’s Manual and Programmer’s Guide 73

MC-3000

4.3

192 line encoder * 4 = 768 quadrature counts/révolution
768 quad. counts / 8 pole motor = 96 quad. counts/pole
therefore ring = 96

96 quad. counts/pole / 3 phases = 32 quad. counts

From Figure 48, we see X=time | phase active = 16

From Figure 48, we see Y=time 2 phase active = 16

The commands “set_x 16" and “set_y 16" are also detailed above.

The next command “set_offset -96” is to satisfy the constraint equation:
(-128D) 80H <= 1.5(Ring) + offset + Max Advance <= 7FH (127D)
Functionally this is equivalent to “set_offset 0" meaning no offset is required.
However the above constraint shows that “set_offset -96” meets the constraint

equation, while “set_offset 0" does not.

The commands “set_max_adv 0" and “set_vel_timer 0" indicate that no phase
advance is used for this example.

The rest of the command program is a variation on the Trapezoidal Profile con-
trol example.

Programming the MC-3000 from the Windows 3.1 based
Motion Control Center

The MC-3000 also provides a Windows 3.1 Graphical User Interface (GUI) to
allow simple point and click operation of the MC-3000 motion control libraries.
Additionally the Dynamic Link Libraries (DDL) are provided for inclusion with
user written Windows application programs, written in Visual Basic, Borland C,
Microsoft C, or any other Windows application development language.

Using the MC-3000 Motion Control Center software is easy, due to the menu
driven selection of the MC-3000 commands, and interactive command descrip-
tions. To invoke this program, the user simply types “WIN MCC3” at the DOS
prompt to start Windows 3.1 and the Motion Control Center Program. To add a
Windows 3.1 icon to the Windows Program Manager, the user simply uses the
Windows pull down menu, FILE, NEW, and adds a new program icon using the
path where the MCC3.EXE file is stored on the users hard disk.

Figure 49 illustrates the MC-3000 interface in the Motion Control Center envi-
ronment. The commands in this environment are identical to the MC-3000
commands and functions described previously for the MCBasic environment,
and C libraries, so they will not be repeated here.

74

User’s Manual and Programmer’s Guide

MC-3000

Omitec Robotics Motion Control Cenr
| File Controller Mode

| [MC3000 Controller Interface Rev. 1.0 STATUS

’ Pos= 0 X Vel = 59902
Pos = 0 Y Vel = 32318
Pos= 0 IZ Vel = 64402

DO: 0 Ipi: 2

~ COMMAND VALUE EDITOR

Command> Value

Last Command Entered

e AN S] — = SCUMMU AT O

GITAL

Y

The MC-3000 Motion Control Center GUI Interface

4.4 Programming the MC-3000 Using the MC-3000 “C”
Language Libraries and a User Supplied C Compiler

For more demanding user application programs, the MC-3000 can also be pro-
grammed using a commercially available “C” language compiler, and the MC-
3000 motion control libraries provided in the EXER.C source code file. The
syntax and semantics of the MC-3000 motion control libraries is the same as
that presented previously for the MCBasic version, and the source code file
EXER.c can be referenced to provide a detailed understanding of the libraries
function. This approach is recommended for more sophisticated users, that have
a working knowledge of the “C” programming language, and require the fastest
possible speed of execution and degree of control for the application programs.

User’s Manual and Programmer’s Guide 75

"MC-3000

4.5

Summary

After experimenting with these different programming approaches, you should
be able to create your own programs to meet your own motion control needs.
These different programming approaches are designed to provide a simple yet
powerful means of creating intelligent motion control applications for a broad
range of applications.

76

User’s Manual and Programmer’s Guide

MC-3000

APPENDIX A
HCTL-1100 Data Sheet

See the Hewlett Packard web site

www.hp.com

Users Manual and Programming Guide

MC-3000

APPENDIX C
Warranty, Maintenance, and Liability

User’s Manual and Programmer’s Guide

MC-3000

Warranty

Servomotive warrants the MC-3000 against defects in workmanship and
materials for a period of one year after the date of shipment. It is
Servomotive's option to repair or replace the MC-3000, provided all of the
following are true:

1. Servomotive is properly notified of any MC-3000 problem.

2. The faulty MC-3000 is returned to Servomotive at the owner's
expense.

3. Upon examination of the MC-3000, Servomotive is satisfied that
said damage did not occur due to misuse, neglect, improper
installation, repair, alteration, or accident.

4. Warranty period is still in effect. ’

After warranty service of the MC-3000, the warranty period will remain in
effect for the duration of the original warranty period.

Maintenance

Maintenance of the MC-3000 should be preformed exclusively by
Servomotive. A faulty MC-3000 is most easily detected by substituting
the questionable MC-3000 with one that known to be functional.

For maintenance assistance, contact Servomotive at 508-791-2221.
Servomotive has computerized testing for the MC-3000 to determine full
functionality. This is the most cost-effective means of maintenance and
trouble shooting.

Liability

Servomotive has no liability whatsoever for any damage, injury, or failure
due to use or misuse of the MC-3000, whether fully functional or faulty.
It is the entirely the user's responsibility for using the MC-3000 in a safe
and responsible manner, and providing the necessary precautions to avoid
any catastrophic failures or bodily injury. Servomotive will in no case be
liable for any special, incidental, or consequential damages.

MC-3000 Appendix D Appendix Page 1

APPENDIX D:
MCBASIC Command Reference

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 2
ABS Function Comments:
The result is in radians and is within the range of -IT/2
Purpose: to I1/2.

To return the absolute value of the expression .
Syntax:

ABS(n)

Comments:

n must be a numeric expression.

Examples:

10 print abs(10)

20 print abs(-3.33)

>10
>3.33

ASC Function

Purpose:

To return a numeric value that is the ASCII code for the first
character of the string x$.

Syntax:
ASC(x$)
Comments:

If x$ begins with an uppercase letter, the value returned will
be within the range of 65 to 90. Ifx$ begins with a lower-
case letter, the range is 97 to 122. Numbers 0 to 9 return 48
to 57, sequentially.

Examples:

10 print asc(“text”)
20 print asc(“Text”)
>116

>84

See Also:

CHRS$

ATN Function

Examples:

10 print atn(-5)
20 print atn(27)
>-1.3734008
>1.5337762

See Also:

TAN

CALL Statement

Purpose:

To call a user-defined subroutine.
Syntax:

CALL subroutine-name [parameters]
Examples:

10 read n,s$

20 call dbl n,s$

30 data 354,”Answer:”
40 end

50 sub dbl (a,b$)

60 ¢c =a * 2

70 print b$,c

80 end sub

>Answer: 708
See Also:
SUB

CASE Statement

Purpose:

To return the arctangent of x.
Syntax:

ATN(®X)

Purpose:

Allows multiple tests to be performed on a single expression.
Syntax:

CASE IF partial expression

CASE constant

CASE ELSE

Examples:

10 read n
20 if (n = 0) then goto 120

User’s Manual and Programmer’s Guide

D]

MC-3000 Appendix D Appendix Page 3
30 select case n CHDIR Command
40 case if < 10
50 print “less than ten” Purpose:

60 case if > 10

70 print “greater than ten”
80 case else

90 print “ten”

100 end select

110 goto 10

120 end

130 data 5,15,10,-2,0

>less than ten
>greater than ten
>ten

>less than ten

See Also:
SELECT

CHAIN Statement

Purpose:

To transfer control to the specified program and pass vari-
ables to it from the current program.

Syntax:
CHAIN “program-name”
Examples:

10 rem programl.bas

20 read a,bs,c

30 common a,b$,c

40 chain “program2.bas”

50 data 50,”Text String”,100

10 rem program2.bas

20 print “variables declared common”

30 print “are passed to chained program”
40 print a,b$,c

>run “programl.bas”

>variables declared common

>are passed to chained program
>50 Text String 100

See Also:
COMMON

To change from one working directory to another.
Syntax:

CHDIR “pathnaﬁme”

Examples:

10 chdir “c:\mcbasic”
20 files “*.bas”

30 chdir “c:\”

40 files “*.exe”

>listing of .BAS files in \mcbasic
>listing of .EXE files in root directory

CHRS Function

Purpose:

To convert an ASCII code to its equivalent character.
Syntax:

CHRS$(n)

Examples:

10 print chr$(65)
20 print chr$(97)
>A

>a

See Also:

ASC

CINT Function

Purpose:

To round numbers with fractional portions to the next whole
number or integer.

Syntax:

CINT(x)

Examples:

10 print cint(-5.5)
20 print cint(24.23)

>-6
>24

User’s Manual and Programmer’s Guide

D e

MC-3000 Appendix D

Appendix Page 4

CLEAR Command

Purpose:

To set all numeric variables to zero and all string variables to

null.
Syntax:
CLEAR
Examples:

10 read a,b,c,d

20 print a,b,c,d

30 clear

40 print a,b,c,d

50 data 10,3.33,37,28

>10 - 3.33 37 28
>0 0 0 0
CLOSE Statement

Purpose:

To terminate input/output to a disk file or a device.
Syntax:

CLOSE #filenumber

Examples:

10 open “c:\mcbasic\info.dat” for input
as #1 len=20

20 input #1,a$

30 print a$

40 close #1

>prints first element in info.dat

See Also:

OPEN

COMMON Statement

Purpose:

To pass variables to a chained program.
Syntax:

COMMON variables

Examples:

10 rem programl.bas
20 read a,bs,c
30 common a,bs$,c

40 chain “program2.bas”
50 data 50,”Text String”,100

10 rem program2.bas

20 print “variables declared common”

30 print “are passed to chained program”
40 print a,bs,c

>run “programl.bas”
>variables declared common
>are passed to chained program

>50 Text String 100
See Also:

CHAIN

COS Function

Purpose:

To return the cosine of x.
Syntax:

COS(x)

Comments:

x must be the radians.
Examples:

10 print cos(0)
20 print cos(32)
>1

>0.8342234

See Also:

SIN

DATA Statement

Purpose:

To store the numeric and string constants that are accessed
by the program READ statement(s).

Syntax:
DATA constants
Examples:

10 read a,bs$,c,d,es$
20 print a,b$,c,d,e$
30 data 4,”text”,3.33,85,”more text”

>4 text 3.33 85 more text

User’s Manual and Programmer’s Guide

R __

MC-3000 Appendix D

See Also:
READ

DATES Statement and Variable

Purpose:

To set or retrieve the current date.
Syntax:

DATES$=v$

v$=DATES$

Examples:

10 print date$

>01-06-19%94
See Also:
TIMES

DEF FN Statement

Purpose:

To define and name a function written by the user.
Syntax:

DEF FNname(arguments) = expression
Comments:

name must be a legal variable name. This name, preceded
by FN, becomes the name of the function.

arguments consists of those variable names in the function

definition that are to be replaced when the function is called.

The items in the list are separated by commas.

expression is an expression that performs the operation of
the function. It is limited to one statement.

Examples:

10 def fnsum(x,y,2) = x + y + 2z
20 read a,b,c

30 print a,b,c

40 print (fnsum a,b,c)

50 data 5,10,15

>5 10 15
>30

I R —
Appendix Page 5
DEFDBL Statement
Purpose:

To declare all variables beginning with specified letters as
double-precision.

Syntax:
DEFDBL letters
Examples:

10 defdbl a-d

20 read a,b,c,d

30 print a,b,c,d

40 data 123.456,111325,4.44,333.978

>123.456 111325 4.44 333.978
DEFINT Statement
Purpose:

To declare all variables beginning with specified letters as
integers.

Syntax:
DEFINT letters
Examples:

10 defint w-z

20 read w,x,y,2

30 print w,x,y,z

40 data 3,27,886,99572

>3 27 886 99572
DEFSTR Statement
Purpose:

To declare all variables beginning with specified letters as
strings.

Syntax:
DEFSTR letters
Examples:

10 defstr i-1

20 read i,j,k,1

30 print i+j+k+1

40 data “de”,”fine “,”str”,”ing”

>define string

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 6
DELETE Command Syntax:
EDIT
Purpose:
To delete program lines or line ranges. ELSE Statement
Syntax:
DELETE line number Purpose:

DELETE line number—line number

DIM Statement

Purpose:

To specify the maximum values for array variable subscripts
and allocate storage accordingly.

Syntax:
DIM variable(subscripts)
Comments:

If an array variable name is used without a DIM statement,
the maximum value of its subscript(s) is assumed to be 10.

The maximum number of dimensions for an array is 255.

The minimum value for a subscript is always 0, unless other-
wise specified with the OPTION BASE statement.

Examples:

10 dim a(10)

20 for i = 1 to 10
30 a(i) = (2 * i)
40 next i

50 print a(2)

60 print a(7)

70 print a(12)

>4
>14
>ERROR in line 70: Value is out of range

See Also:
OPTION BASE

EDIT Command

Purpose:

Invokes the TDE ASCII text editor to simplify program revi-
sions. This is necessary when writing programs without line
numbers.

To make a decision regarding program flow based on the
result returned by an expression.

Syntax:
IF expression THEN statements ELSE statements
Examples:

10 read n

20 print n

30 if (n > 0) then goto 10 else goto 40
40 print “finished”

50 end

60 data 5,10,15,0

>5

>10

>15

>0
>finished

See Also:
IF

ELSEIF Statement

Purpose:

To make a decision regarding program flow based on the
result returned by an expression.

Syntax:

IF expression THEN
statements

ELSEIF expression
statements

END IF

Examples:

10 read n

20 if (n = 0)
30 goto 120
40 elseif (n < 10)

50 print “less than ten”
60 elseif (n > 10)

then

User’s Manual and Programmer’s Guide

D e

MC-3000 Appendix D

Appendix Page 7

70 print “greater than ten”
80 else

90 print “ten”

100 end if

110 goto 10

120 end

130 data 5,15,10,-2,0

>less than ten
>greater than ten
>ten

>less than ten

See Also:
IF

ENVIRON, ENVIRONS Statements

Purpose:

To allow the user to modify and retrieve parameters in
MCBASIC'’s environment string table.

Syntax:

ENVIRON “environment variable” = string variable
string variable = ENVIRONS(“environment variable”)
Examples:

10 a$ = environ$ (“PATH”)

20 print a$

30 environ “PATH” = a$ + “;C:\MCBASIC”
40 print environ$ (“PATH”)

>C:\
>C:\;C:\MCBASIC

ERASE Statement

Purpose:

To eliminate arrays from a program.
Syntax:

ERASE array variables

Examples:

10 dim a(10)

20 for i = 1 to 10
30 a(i) = (2 * 1)
40 next i _

50 for i = 1 to 10
60 print a(i)

70 next i

80 erase a
90 goto 50

>2
>4
>6
>8
>10
>12
>14
>16
>18
>20
>ERROR in line 60: Syntax error

ON ERROR, ERL, ERR Statements and Variables

Purpose:

To enable error trapping and to return the error code (ERR)
and line number (ERL) associated with an error.

Syntax:
ON ERROR GOSUB line number
Examples:

10 on error gosub 1000

20 rem line 30 produces an “unknown com-
mand” error

30 readn

40 print n

50 end

60 data 324

1000 rem error handler

1010 print “error number:”,err

1020 print “error line:”,erl

1030 end '

>error number: 22
>serror line: 30

ERROR Statement

Purpose:

To simulate the occurrence of an error.
Syntax:

ERROR integer expression

Examples:

10 read n
20 if (n = 0) then goto 60
30 print (100 / n)

User’s Manual and Programmer’s Guide

MC-3000 Appendix D

Appendix Page 8

40 goto 10
50 data 5,2,10,0
60 error 19

>20
>5
>10
>ERROR in line 60: Divide by zero

EXP Function

Purpose:

To return e (the base of natural logarithms) to the power of x.

Syntax:

EXP(x)

Comments:

x must be less than 88.02969.
Examples:

10 print exp(0)

20 print exp(3)

>1
+>20.0855369

FIELD# Statement

Purpose:

To allocate space for variables in a random file buffer.
Syntax:

FIELD #filenumber,width AS string variable
Comments:

A FIELD statement must have been executed before you can
get data out of a random buffer after a GET statement or
enter data before a PUT statement.

Examples:

10 open “r”,#1,”c:\mcbasic\info.dat”,25
20 field #1,25 as rec$

30 for i = 1 to 10

40 get #1,1i

50 print rec$

60 next i

70 close #1

>prints first ten records in info.dat

See Also:
GET, PUT

FILES Command

Purpose:

To print the names of the files residing on the specified
drive.

Syntax:
FILES [“pathname’]
Examples:

files
files “*.bas”
files “c:\path*.dat”

FOR Statement

Purpose:

To execute a series of instructions a specified number of
times in a loop.

Syntax:
FOR variable = x TO y [STEP z]

NEXT variable

Comments:

variable is used as a counter.

x, y, and z are numeric expressions.

STEP z specifies the counter increment for each loop. If
STEP is not specified, the increment is assumed to be 1.

Examples:
10 for i =1 to 5

20 print i
30 next i

>1
>2
>3
>4
>5

See Also:
NEXT

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 9
FUNCTION Statement See Also:
PUT#
Purpose:
Declares a user-defined function. GOSUB...RETURN Statement
Syntax:
FUNCTION functionname(variables) Purpose:

END FUNCTION
Examples:

10 read n

20 if (n = -1) then goto 50
30 print (fnfact n)

40 goto 10

50 end

60 data 3,4,5,6,-1

70 function fnfact(a)

80 total =1

90 for a = a to 1 step -1
100 total = (total * a)
110 next a

120 fnfact = total

130 end function

>6
>24
>120
>720

. GET# Statement

Purpose:

To read a record from a random disk file into a random
buffer.

Syntax:
GET #filenumber,recordnumber
Examples:

10 open “r”,#1,”c:\mcbasic\info.dat”,25
20 field #1,25 as rec$

30 for i = 1 to 10

40 get #1,1i

50 print rec$

60 next i

70 close #1

>prints first ten records in info.dat

To branch to, and return from, a subroutine.
Syntax:
GOSUB line number

RETURN
Comments:
line number is the first line number of the subroutine.

If the program was written without line numbers, a label may
be used in place of a line number.

Examples:

l10n =5

20 print n

30 gosub 100
40 print n

50 end
100 n = n + 10
110 return

>5
>15

GOTO Statement

Purpose:

To branch unconditionally out of the normal program
sequence to a specified line number.

Syntax:

GOTO line number

Comments:

line number is any valid line number within the program.

If the program was written without line numbers, a label may
be used in place of a line number.

User’s Manual and Programmer’s Guide

MC-3000 Appendix D

Appendix Page 10

Examples:

10 read n

20 print n

30 if (n = 0) then goto 50
40 goto 10

50 end

60 data 1,3,5,7,0

>1
>3
>5
>7
>0

HEXS Function

Purpose:

To return a string that represents the hexadecimal value of
the numeric argument.

Syntax:

v$ = HEX$(x)

Examples:

10 print hex$ (255)
20 print hex$(27)

>FF
>1B

IF Statement

Purpose:

To make a decision regarding program flow based on the
result returned by an expression.

Syntax:

IF expression THEN statements [ELSE statements]
IF expression THEN

statements

ELSEIF expression

END IF
Examples:

10 read n
20 print n

30 if (n > 0) then goto 10 else goto 40
40 print “finished”

50 end

60 data 5,10,15,0

>5

>10

>15

>0
>finished

10 read n

20 if (n = 0) then

30 goto 120

40 elseif (n < 10)

50 print “less than ten”
60 elseif (n > 10)

70 print “greater than ten”
80 else

90 print “ten”

100 end if

110 goto 10

120 end

130 data 5,15,10,-2,0

>less than ten
>greater than ten
>ten

>less than ten

See Also:
ELSE, ELSEIF

INPUT Statement

Purpose:

To prepare the program for input from the terminal during
program execution.

Syntax:
INPUT “prompt string”;variable
Comments:

prompt string is a string literal, displayed on the screen, that
allows user input during program execution.

Examples:

10 input “Enter a number”;n
>Enter a number?

> (stores answer in n)

See Also:

LINE INPUT

User’s Manual and Programmer’s Guide

MC-3000 Appendix D

Appendix Page 11

INPUT# Statement

Purpose:

To read data items from a sequential file and assign them to
program variables.

Syntax:
INPUT #file number, variable list
Examples:

10 open “c:\mcbasic\info.dat” for input
as #1 len=20

20 input #1,a$

30 print a$

40 close #1

>sprints first element in info.dat
See Also:
CLOSE#

INSTR Function

Purpose:

To search for the first occurrence of string y$ in x$, and
return the position at which the string is found.

Syntax:
INSTR(x$,y$)
INSTR(n,x$,y$)
Comments:

Optional offset n sets the position for starting the search. The
default value for n is 1.

Examples:

10 a$ = “demonstration string”
20 print instr(a$,”ration”)
30 print instr(15,a$,”txr”)

>8
>16

INT Function

Purpose:

To truncate an expression to a whole number.
Syntax:

INT(x)

Examples:

10 print int (45.67)
20 print int(5.358)

>45
>5

KILL Command

Purpose:

To delete a file from a disk.
Syntax:

KILL “filename”
Examples:

kill “filename.ext”
kill “c:\mcbasic\program.bas”

LEFTS Function

Purpose:

To return a string that comprises the leftmost » characters of
x$.

Syntax:

LEFT$(x$,n)

Examples:

10 a$ = “demonstration string”
20 print lefts (as,4)

>demo

See Also:

RIGHTS

LEN Function

Purpose:

To return the number of characters in x$.
Syntax:

LEN(x$)

Examples:

10 a$ = “demonstration string”

20 print len(a$)

>20

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 12

LET Statement Syntax:

LIST [line number]-[line number]
P :

urpose Examples:

To assign the value of an expression to a variable. .

list
Syntax: list 30
[LET] variable = expression list 10-50
Comments:

LOAD Command
The word LET is optional; the equal sign is sufficient when
assigning an expression to a variable name.

Purpose:

Examples: : .
To load a file from diskette into memory.
10 let x = 5

20 print x Syntax:
LOAD “filename”
>5
Examples:
LINE INPUT Statement load “program.bas”
load “c:\mcbasic\file.bas”
Purpose: See Also:
To input an entire line from the keyboard into a string vari- SAVE
able, ignoring delimiters.
Syntax: : LOC Function
LINE INPUT “prompt string”;string variable
Purpose:

Comments: .
_ . o . To return the current position in the file.
prompt string is a string literal, displayed on the screen, that

allows user input during program execution. Syntax:
A question mark is not printed unless it is part of prompt LOC(filenumber)
string. Examples:
Special characters, such as commas, are accepted in operator 19 open “r”,#1,”c:\mcbasic\info.dat”,20
Input. 20 field #1,20 as rec$
Examples: 30 for 1 = 1 to 2
40 get #1,1i
10 line input “prompt:”;a$ 50 print rec$
60 next i
>prompt : 70 print loc (1)
>(stores string in a$; includes commas, 80 close #1
quotation marks, etc.)
See Also: >first record
>second record
INPUT >3
LIST Command LOF Function
Purpose: Purpose:
To list all or part of a program to the screen. To return the length (number of bytes) allocated to the file.

User’s Manual and Programmer’s Guide

L2

MC-3000 Appendix D Appendix Page 13
Syntax: See Also:
LOF(filenumber) RSET
Examples:
10 open “c:\mcbasic\info.dat” for input MERGE Command
as #1 len=20
20 print lof (1) Purpose:

30 close #1

>number of bytes in info.dat

LOG Function

Purpose:

To return the natural logarithm of x.
Syntax:

LOG(x)

Comments:

x must be a number greater than zero.
Examples:

10 print log(1)

20 print log(23)

>0
>3.1354942

LSET Statement

To merge the lines from an ASCII program file into the pro-
gram already in memory.

Syntax:
MERGE “filename”
Examples:

(in memory)
10 rem line 10 pgm one
20 rem line 20 pgm one

(on disk)
5 rem line 5 pgm two
15 rem line 15 pgm two

>merge “program2.bas”
>list

>5 rem line 5 pgm two
>10 rem line 10 pgm one
>15 rem line 15 pgm two
>20 rem line 20 pgm one

MKDIR Command

Purpose:

To move data from memory to a random-file buffer and left-
justify it in preparation for a PUT statement.

Syntax:
LSET string variable = string expression
Examples:

10 read txt$,rnum

20 open “r”,#1,”c:\mcbasic\info.dat”,20
30 field #1,20 as rec$
40 lset rec$ = txt$

50 put #1,rnum

60 close #1

70 data “recordone”,l
>writes “recordone 7 into
position 1

Purpose:

To create a subdirectory.
Syntax:

MKDIR “pathname”

Examples:

mkdir “c:\path\newdir”
See Also:

RMDIR

NAME Command

Purpose:

To change the name of a disk file.

Syntax:

NAME “old filename” AS “new filename”

User’s Manual and Programmer’s Guide

MC-3000 Appendix D

Appendix Page 14

Examples:

name “oldname.bas” as “newname.bas”
name “c:\path\oldname.ext” as
“c:\path\newname.ext”

NEW Command

Purpose:

To delete the program currently in memory and clear all
variables.

Syntax:
NEW

NEXT Command

Purpose:

To terminate a FOR loop.
Syntax:

NEXT variable
Examples:

10 for i = 1 to 5
20 print i
30 next 1

>1
>2
>3
>4
>5

See Also:
FOR

OCTS Function

Purpose:

To convert a decimal value to an octal value.
Syntax:

OCTS$(x)

Examples:

10 print oct$(53)

20 print oct$(100)

>65
>144

ON ... GOTO Statement

Purpose:

To branch to one of several specified line numbers, depend-
ing on the value returned when an expression is evaluated.

Syntax:
ON expression GOTO line numbers
Examples:

10 read x

20 if (x = 0) then goto 50
30 n = x/100

40 on n goto 100,200,300,400
50 end

60 data 200,400,300,100,0
100 print “line 100”

199 goto 10

200 print “line 200"

299 goto 10

300 print “line 300”

399 goto 10

400 print “line 400”

499 goto 10

>line 200
>line 400
>line 300
>line 100

ON ... GOSUB Statement

Purpose:

To branch to one of several specified line numbers, depend-
ing on the value returned when an expression is evaluated.

Syntax:
ON expression GOSUB line numbers
Examples:

10 read x

20 if (x = 0) then goto 500
30 n = x/100

40 on n gosub 100,200,300,400
50 goto 10

60 data 200,400,300,100,0
100 print “line 100”7

199 return

200 print “line 200”

299 return

300 print “line 300"

399 return

400 print “line 400"

User’s Manual and Programmer’s Guide

L R R R
MC-3000 Appendix D

Appendix Page 15

499 return
500 end

>line 200
>line 400
>line 300
>line 100

OPEN Statement

Purpose:

To establish input/output to a file or device.

Syntax:

OPEN “mode” j#file number,”filename” record length

OPEN “filename” FOR mode AS #file number LEN=record
length

Comments:

mode (first syntax) is one of the following characters:

(6] Sequential output mode

I Sequential input mode

R Random input/output mode
A Position to end of file

mode (second syntax) determines the initial positioning
within the file, and the action to be taken if the file does not
exist. The valid modes and actions taken are as follows:

INPUT Position to the beginning of the file.

An error is given if the file does not exist.
OUTPUT Position to the beginning of the file.

File is created if it does not exist.
APPEND Position to the end of the file.

File is created if it does not exist.
RANDOM Specifies random input or output mode.
Examples:

10 open “r”,#1,”c:\mcbasic\info.dat”,20
20 field #1,20 as rec$

30 for i = 1 to 2

40 get #1,1

50 print rec$

60 next i
70 print loc(1)
80 close #1 .

>first record
>second record
>3

10 read a$

20 open “c:\mcbasic\info.dat” for output
as #1 len=20

30 print #1,a$

40 close #1

50 data “output string”

>writes “output string” to info.dat
See Also:
CLOSE#

OPTION BASE Statement

Purpose:

To declare the minimum value for array subscripts.
Syntax:

OPTION BASE »

Comments:

nis 1 or 0. The default base is 0.

Examples:

option base 0
option base 1

See Also:
DIM

POS Function

Purpose:

To return the current cursor position.
Syntax:

POS

Examples:

10 s$ = “12345”

20 print s$,pos

>12345 14
> (five plus the tab stop)

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 16

PRINT Statement field:
! Specifies that only the first character in the
Purpose: string is to be printed.
To output a display to the screen. \n spaces\ Specifies that 2 + » characters from the string
Syntax: are to be printed.
PRINT list of expressions # A p.o§md sign is used tc? represent .each digit
position. A decimal point may be inserted at

Examples: any position in the field. Numbers are rounded
10 read n as necessary.
20 print n - Examples:

30 if (n > 0) then goto 10 else goto 40
40 print “finished”

50 end

60 data 5,10,15,0

>5

>10

>15

>0
>finished

PRINT# Statement

Purpose:

To write data to a sequential disk file.
Syntax:

PRINT #file number,list of expressions
Examples:

10 read a$

20 open “c:\mcbasic\info.dat” for output
as #1 len=20

30 print #1,a$

40 close #1

50 data “output string”

>writes “output string” to info.dat

PRINT USING Statement

Purpose:

To print strings or numbers using a specified format.
Syntax:

PRINT USING “string field”;list of expressions
Comments:

The following characters may be used to format the string

10 print using “##.##”;123.456
20 print using “!“;”first character”

>123.46
>f

PUT Statement

Purpose:

To write a record from a random buffer to a random disk file.
Syntax:

PUT #file number,record number

Examples:

10 read txt$,rnum

20 open “r”,#1,”c:\mcbasic\info.dat”,20
30 field #1,20 as rec$
40 lset rec$ = txt$

50 put #1,rnum

60 close #1

70 data “recordone”, 1l
>writes “recordone ” into
position 1

See Also:
GET

RANDOMIZE Statement

Purpose:

To reseed the random number generator.
Syntax:

RANDOMIZE expression

User’s Manual and Programmer’s Guide

MC-3000 Appendix D

Appendix Page 17

Examples:

randomize 5
randomize 100

See Also:
RND

READ Statement

Purpose:

To read values from a DATA statement and assign them to
variables.

Syntax:
READ list of variables
Examples:

10 read a,b$,'c,d,e$
20 print a,b$,c,d,e$
30 data 4,”text”,3.33,85,”more text”

>4 text 3.33 85
See Also:
DATA

more text

REM Statement

Purpose:

To allow explanatory remarks to be inserted in a program.
Syntax:

REM comment

Examples:

10 print “line 10”
20 rem print “line 20”
30 print “line 30”

>line 10
>line 30

RESTORE Statement

Purpose:

To allow DATA statements to be reread from a specific line.
Syntax:

RESTORE line number

Examples:

10 read a,bs$,c,ds

20 print a,b$,c,ds$

30 restore 60 ’
40 read e,£f3$,g,hs$

50 print h$,qg,e,£$

60 data 7654,”Text”,123.456,”String”

>7654 Text 123.456 String
>String 123.456 7654 Text
RIGHTS Function

Purpose:

To return the rightmost i characters of string x$.
Syntax:

RIGHTS$(x$,)
Examples:
10 a$ = “demonstration string”

20 print right$(a$,9)

>on string
See Also:
LEFTS$

RMDIR Command

Purpose:

To delete a subdirectory.
Syntax:

RMDIR “pathname”

Examples:

rmdir “c:\path\olddir”
See Also:

MKDIR

RND Function

Purpose:

To return a random number between 0 and 1.
Syntax:

RND(x)

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 18
Examples: SAVE Command
print rnd(1)
print rnd(300) Purpose:

>each prints a random number between zero
and one

See Also:
RANDOMIZE

RSET Statement

Purpose:

To move data from memory to a random file buffer and right
justify it in preparation for a PUT statement.

Syntax:
RSET string variable = string expression
Examples:

10 read txt$,rnum .
20 open “r”,#1,”c:\mcbasic\info.dat”, 20
30 field #1,20 as rec$

40 rset rec$ = txt$

50 put #1,rnum

60 close #1

70 data “recordone”, 1l

>writes “ recordone” into

position 1
See Also:
LSET

RUN Command

Purpose:

To execute the program currently in memory, or to load a
file from the diskette into memory and run it.

Syntax:

RUN

RUN “filename”
Examples:

run
run “filename.bas”
run “c:\mcbasic\program.bas”

To save a program file on diskette.
Syntax:

SAVE “filename”

Examples:

save “filename.bas”
save “c:\mcbasic\program.bas”

See Also:
LOAD

SELECT Statement

Purpose:

Allows multiple tests to be performed on a single expression.
Syntax:

SELECT CASE expression

END SELECT
Examples:

10 read n

20 if (n = 0) then goto 120
30 select case n

40 case 5

50 print “five”

60 case 10

70 print “ten”

80 case else

90 print “other”

100 end select

110 goto 10

120 end

130 data 5,15,10,-2,0

>five
>other
>ten
>other

See Also:
CASE

User’s Manual and Programmer’s Guide

MC-3000 Appendix D - Appendix Page 19

SGN Function Examples:
10 print sin(0)

Purpose: 20 print sin(-34)
To return the sign of x. 20
Syntax: >-0.5290827
SGN(x) See Also:
Comments: COS

If x is positive, SGN(x) returns 1.
If x is 0, SGN(x) returns 0. SPC Function
If x is negative, SGN(x) returns -1.

Purpose:
Examples:)

To skip a specified number of spaces in a PRINT statement.
10 read n

20 if (n = 999) then goto 130 ‘Syntax:
30 x = sgn(n) SPC(n)
40 select case x
50 case 1 Examples:
60 print n,”positive” 10 print “ten” + spc(10) + “spaces”
70 case -1
80 print n,”negative” sten spaces
90 case else
100 print n,”zero” See Also:
110 end select TAB
120 goto 10
130 end
140 data 100,-4,-55,67,8,0,-21,0,-1,5, SQR Function
999
- Purpose:
>100 positive
>-4 negative Returns the square root of x.
>33 nenglt:i.ve Syntax:
>67 positive
>8 positive SQR(x)
>0 zexo | Comments:
>-21 negative
>0 zero X must be greater than or equal to zero.
>t neg?.t ::.ve Examples:
>5 positive

10 print sqgr(81)
20 print sqr(55)

SIN Function
>9
Purpose: >7.4161985
To calculate the trigonometric sine of x, in radians.
S STOP Statement
yntax:
SING) Purpose:

To terminate program execution and return to a command
level.

User’s Manual and Programmer’s Guide

D T ..
MC-3000 Appendix D

Syntax:
STOP
Examples:

10 print “line 10”
20 print “line 20"
30 stop

40 print “line 40"

>line 10
>line 20

STRS Function

Purpose:

To return a string representation of the value of x.
Syntax:

STR$(x)

Examples:

10 read a,b

20 x$ = strs$(a)

30 y$ = str$(b)

40 print a,b, (a + b)

50 print x$,vy$, (x$ + y$)
60 data 123,456

SUB Statement

Appendix Page 20

Purpose:
To declare a user defined procedure.
Syntax:

SUB subroutine name (parameters)

END SUB
Examples:

10 read n,s$

20 call dbl n,s$

30 data 354, “Answer:”
40 end

50 sub dbl (a,bs$)

60 c =a * 2

70 print b$,c

80 end sub

>Answer: 708
See Also:
CALL

SWAP Statement

>123 456 579
>123 456 123456
See Also:

VAL

STRINGS Function

Purpose:

To return a string of length » whose characters all have
ASCII code j.

Syntax:

STRINGS(n,)

Examples:

10 print string$(9,65)
20 print string$(21,33)

>AAAAARAAA

.....................

Purpose:

To exchange the values of two variables.

Syntax:

SWAP variablel,variable2

Comments:

variablel and variable 2 must be of the same type.
Examples:

10 read a,b
20 print a,b
30 swap a,b
40 print a,b
50 data 12,34

>12 34
>34 12

User’s Manual and Programmer’s Guide

IS
MC-3000 Appendix D Appendix Page 21
SYSTEM Command Syntax:
TIMES$=v$
P :
urpose v$=TIMES
To return to MS-DOS.
Examples:

Syntax:
SYSTEM

TAB Function

Purpose:

Spaces to position » on the screen.

Syntax:

TAB(®»)

Examples:

10 print “Name:” + tab(20) + “Amount:”
20 print “Smith” + tab(20) + “$300.00”
>Name : Amount:

>Smith $300.00

See Also:

SPC

TAN Function

Purpose:

To calculate the trigonometric tangent of x, in radians.
Syntax:

TAN(x)

Examples:

10 print tan(0)
20 print tan(20)
>0

>2.2371609

See Also:

ATN

TIMES Statement and Variable

10 print times$

>11:27:45
See Also:
DATES

TRON/TROFF Commands

Purpose:

To trace the execution of program statements.
Syntax:

TRON

TROFF

Examples:

10 tron

20 k = 10

30 for j =1 to 2
40 1 =k + 10

50 print j ; k ; 1
60 k = k + 10

70 next j

80 troff

>Trace is ON
>[20] [30] [40] [50] 1 10 20
>[60] [70] [40] [50] 2 20 30
>[60] [70] [80] Trace is OFF

VAL Function

Purpose:

To set or retrieve the current time.

Purpose:

Returns the numerical value of string x$.
Syntax:

VAL(x$)

Examples:

10 read as$,bs

20 x = val(a$)

30 y = val(b$)

40 print a$,bs, (a$ + b$)
50 print x,y, (x + y)

User’s Manual and Programmer’s Guide

MC-3000 Appendix D Appendix Page 22

60 data “123”,"456" Examples:
>123 456 123456 10 width 25 . .

20 print “this string is over twenty-five
>123 456 579

characters long”

See Also:
STRS >this string is over twen

>ty-five characters long
WHILE-WEND Statement WIDTH# Statement
Purpose: Purpose:

To execute a series of statements in a loop as long as a given
condition is true.

Syntax:
WHILE expression

WEND
Examples:

10 read x

20 while (x <> 0)

30 print x

40 read x

50 wend

60 print “done”

70 data 1,3,5,7,600,254,1145,333.333,
64,0

>1

>3

>5

>7

>600
>254
>1145
>333.333
>64
>done

WIDTH Statement

To set the line width in number of characters for a file.
Syntax:

WIDTH #filenumber,number

Examples:

10 open “c:\path\filename.dat” for out-
put as #1

20 width #1,25

30 print #1,”this string is over twenty-
five characters long”

40 close #1

filename.dat contains:

>this string is over twen
>ty-five characters long

WRITE Statement

Purpose:

To set the printed line width in number of characters for the
screen.

Syntax:
WIDTH number

Purpose:

To output data to the screen.
Syntax:

WRITE list of expressions
Comments:

When printed items are output, each item will be separated
from the last by a comma. Printed strings are delimited by
double quotation marks.

Examples:

10 read a,b$,c
20 write a,bs$,c
30 data 100,”Text String”,-32

>100,”Text String”,-32

User’s Manual and Programmer’s Guide

L S S S S P S S

MC-3000 Appendix D Appendix Page 23

WRITE# Statement >done

Purpose:

To write data to a sequential file.
Syntax:

WRITE #,filenumber,list of expressions
Comments:

The WRITE# and PRINT# statements differ in that WRITE#
inserts commas between the items as they are written and
delimits strings with quotation marks, making explicit
delimiters in the list unnecessary. '

Examples:

10 read a,bs,c

20 open “c:\path\filename.dat” for out-
put as #1

30 write #1,a,b$,c

40 close #1

50 data 100, ”Text String”,-32

filename.dat contains:

>100, "Text String”,-32

label:

Purpose:

Allows a program without line numbers to branch to a spe-
cific location.

Syntax:
labelname:
Examples:

start:

read n

if (n = 0) then goto finish
print n

goto start

finish:

print “done”

end

data 10,20,30,-5,-4,-3,0
>10

>20

>30

>-5

>-4

>-3

User’s Manual and Programmer’s Guide

